QONX" Neutrino” Realtime Operating System

QNX" 4 to QNX" Neutrino
Migration Guide

For QNX" Neutrino” 6.2

0 2006, QNX Software Systems GmbH & Co. KG.

[J 2000-2006 QNX Software Systems GmbH & Co. KG. All rights reserved.
Published under license by:

QNX Software Systems I nternational Corporation
175 Terence Matthews Crescent

Kanata, Ontario

K2M 1wW8

Canada

Voice: +1 613 591-0931

Fax: +1 613 591-3579

Email: i nf o@nx. com

Web: htt p: // www. gnx. conf

Publishing history
Electronic edition published 2006
Technical support options

To obtain technical support for any QNX product, visit ffeehnical Support section in theServices area on our websitevw. gnx. con). You'll find a wide range of support
options, including our free web-basBéveloper Support Center.

QNX, Neutrino, Photon, Photon microGUI, Momentics, and “Build a More Reliable World" are trademarks, registered in certain jurisdictions, oft@bié¢ Systems GmbH & Co. KG and are used
under license by QNX Software Systems International Corporation. All other trademarks belong to their respective owners.

Contents

July 24, 2006

About This Guide Vil
Meet the New OS 1

Architecture 3
Support for multiple processors 3
SMP 3

Portability 3
Moving files from QNX 4 to QNX Neutrino

Development Environment 5
Compiler & tools 7
Header files 7
Libraries 7
Static and dynamic libraries 7
Useful manifests 8
Debugging 8
Buildfiles and images 8

Programming Issues 9
Scheduling 11
Priority range 11
Process issues 12
Process creation 12
Process flags 13
Native QNX networking 13
I/0 Managers vs Resource Managers 13
Messages 14
Connection-oriented philosophy 14
Channel IDs vs process IDs 14
How should the receiver be written? 15
How does the sender find the receiver?

Receiving messages in a resource manager

_PPESIGCATCH 17

Contents iii

[0 2006, QNX Software Systems GmbH & Co. KG.

iv

Contents

Message priority 17
Priority floating 18
Receiving from across the network 18
Events 18

Proxiesvs pulses 19
Example of pulses with a resource manager
Signal services 22
Signals and threads 23
Shared memory 24
Semaphores 24

Named semaphores 24
POSIX Message Queues 24
Timers 25

Timeouts 25

Interrupts 25

Hardware /1O 26

Port 1/0 26
Memory-mapped /1O 27
Memory for DMA 28
PCl functions 28
Getting system information 28
Getting process information 28
Theterm () Functions 28

Migration Methodology 31
A suggested approach 33

Get to know QNX Neutrino 33
Installthe OS 33

Move your environment 33

Move your utilities 34

Plan! 34
Moving a program 34
Analysis 34

Architectural issues 35
Converting header files 35
Converting pathnames 35
Converting functions, etc. 35

The m g4nt o Utility 37
m g4nt o 39

20

July 24, 2006

[0 2006, QNX Software Systems GmbH & Co. KG.

July 24, 2006

The Migration Library 41

The migration process managet ¢4nt o- procngr) 43
Migration functions that requirei g4nt o- pr ocnyr 44

The migration library functions 44

QNX 4 Functions & QNX Neutrino Equivalents 53
QNX 4 functions supported by QNX Neutrino 117

Contents

\Y

About This Guide

July 24, 2006 About This Guide Vil

[0 2006, QNX Software Systems GmbH & Co. KG.

July 24, 2006

TheQNX 4 — QNX Neutrino Migration Guide is intended as a kind of road map to
help you:

e discover the differences and additional functionality of QNX Neutrino
e modify your existing QNX 4 source code to work under QNX Neutrino.

Written specifically for the QNX 4 applications developer, the guide’s main focus is
the API; it doesn’t deal with differences in system commands, editors, and so on.
Nevertheless, we hope you'll find the guide a valuable resource for determining what
you need to do to your existing software in order to take advantage of the rich new
features of QNX Neutrino.

The following may help you find what you need in this guide:

When you want to: Goto:

Get an overview of the differences Meet the New OS
between the two systems

Plan your migration strategy Migration Methodology
Find out about headers, libraries, Development Environment

debugging, buildfiles, and more

Learn about threads, connection IDs, Programming Issues
pulses, resource managers, and more

Look up a cover function The Migration Library

Identify items in your QNX 4 programs Theni g4nt o Utility
that need attention

Look up the QNX Neutrino equivalent QNX 4 Functions & QNX Neutrino

for any QNX 4 function Equivalents
View the list of QNX 4 functions QNX 4 functions supported by QNX
supported by QNX Neutrino Neutrino

About This Guide iX

Chapter 1
Meet the New OS

In this chapter...

Architecture 3

Support for multiple processors 3
SMP 3

Portability 3

July 24, 2006 Chapter 1 « Meet the New OS 1

0 2006, QNX Software Systems GmbH & Co. KG. Architecture

Architecture

Architecturally, QNX Neutrino is the same as QNX 4. It provides an open-systems
POSIX API in a robust scalable form suitable for a wide range of solutions — from
tiny resource-constrained systems to high-end distributed computing environments.

Support for multiple processors

SMP

Portability

One big difference between QNX 4 and QNX Neutrino is that the new OS runs on a
number of different processors — x86, ARM, MIPS, PowerPC, and SH4. Assuming
that you didn’t use any processor-specific tricks, a program written for QNX Neutrino
on an x86 could be recompiled and relinked so that it will also run on a Power PC
machine.

QNX Neutrino can also run on a multi-processor machine. This machine might have 4
Gbytes of physical memory managed by a number of processors.

QNX Neutrino was also designed to be even more portable than QNX 4. The new OS
contains newer POSIX components (e.g. POSIX threads). New functions from the
Unix 98 standard and from other sources have been added.

Moving files from QNX 4 to QNX Neutrino

Migrating files from a QNX 4 system to a QNX Neutrino system isn’t complicated for
this simple reason: they use the same filesystem. If you're going to run QNX Neutrino
on a PC with a QNX 4 filesystem, then all the files in the QNX 4 partition or disk are
accessed exactly the same as they were before.

In fact, you could replace your. boot or/ . al t boot file with a QNX Neutrino
bootable image and reboot into the new QNX Neutrino OS.

Typical development cycle

Many developers may want to have their QNX Neutrino target machine act as an NFS
or CIFS client; this is certainly possible.

Using this scheme, you can set up a QNX 4 development system and a QNX Neutrino
target system that has access to the QNX 4 files. With two machines side-by-side, a
typical development cycle becomes:

From the QNX 4 machine:

July 24, 2006

1 Edit.
2 Compile.
3 Link.

Chapter 1 e« Meet the New OS 3

Portability 0 2006, QNX Software Systems GmbH & Co. KG.

From the QNX Neutrino machine:

O Run.

4 Chapter 1 e« Meet the New OS July 24, 2006

Chapter 2
Development Environment

In this chapter...

Compiler & tools 7
Header files 7
Libraries 7

Useful manifests 8
Debugging 8
Buildfiles and images 8

July 24, 2006 Chapter 2 o Development Environment 5

0 2006, QNX Software Systems GmbH & Co. KG. Compiler & tools

Compiler & tools

Header files

Libraries

The compiler used for QNX Neutrino is the GNU compilge€). Currently,
development can be done from these hosts:

e QNX Neutrino
e MS-Windows
e Solaris

If you have the QNX Momentics Professional Edition, you can develop using the
Integrated Development Environment (IDE) from any host. Alternatively, you can use
command-line tools that are based on the GNU compiler.

If you have the QNX Momentics Standard Edition, you have only the command-line
tools available.

For MS-Windows hosts, you also have the option of getting the CodeWarrior tools
from Metrowerks. Currently, the CodeWarrior IDE also uges.

Note that when developing using the GNU compiler, you don’t run the compiler
directly. Instead, you use a front-end tool caltgdt. A minimum compile would look
like this:

gcc nyprogramc -o nyprogram

Header files reside und&f QNX_TARGET} / usr /i ncl ude, where the value of
QNX_TARGET depends on where you're doing your development.

Libraries that you link against are #{ ONX_TARGET} / ${ PROCESSOR} / | i b.
When migrating from QNX 4PROCESSOR would most likely be x86.

Static and dynamic libraries

July 24, 2006

QNX Neutrino supports both static libraries and dynamic libraries. If you link with
static libraries, then code from the libraries is inserted into your executable.

Dynamic libraries in QNX Neutrino are the equivalent of shared libraries in QNX 4.

In fact, we usually call thershared objects, though many people also know them as
DLLs. In the case of dynamic libraries, the code for the library is loaded into memory
when the first program that uses that library is run.

Chapter 2 o Development Environment 7

Useful manifests 0 2006, QNX Software Systems GmbH & Co. KG.

Useful manifests

Here are some manifests you may find useful:

#i f defined(—_WATCOMC__)

/* Then the programwas conpiled with Watcom */
#elif defined(——_GNUC_.)

/* Then the programwas conpiled with GCC */
#elif defined(——MNERKS__)

/* Then the programwas conpiled with Metrowerks */
#endi f

As well, you could do things like:

#if defined(——QNXNTO_-)

/* Then the programwas conpiled for QNX Neutrino */
#el se

/* Then the programwas conpiler for QNX 4 */
#endi f

Debugging
There are a variety of options that you can use for debugging:
¢ the IDE that’s part of the QNX Momentics Professional Edition
e gdb, which is available on all hosts
e the CodeWarrior IDE debugger from Metrowerks
e ddd under QNX Neutrino.

Thegdb debugger is a command-line program used in conjunction with¢he
compiler (recall thagcc is the back-end compiler for thggec command) and is
documented in th<ilities Reference.

Buildfiles and images

Image files are conceptually the same as in QNX 4, but structurally very different.
There is asysi ni t file if you're using QNX Neutrino, but there isn’t one by default
on your target. The buildfile language has been expanded to include primitive
scripting.

For more information, see the chapter on “Making an OS Image” ifBtlleling
Embedded Systems book in the Embedding SDK package, as well as the
documentation on theeki f s utility.

8 Chapter 2 » Development Environment July 24, 2006

Chapter 3

July 24, 2006

In this chapter...

Scheduling 11
Process issues 12
Native QNX networking 13

I/O Managers vs Resource Managers 13

Messages 14

Events 18

Proxies vs pulses 19

Signal services 22

Shared memory 24
Semaphores 24

POSIX Message Queues 24
Timers 25

Interrupts 25

Hardware /1O 26

Getting system information 28
Getting process information 28
Theterm_() Functions 28

Chapter 3 ¢ Programming Issues

Programming Issues

9

0 2006, QNX Software Systems GmbH & Co. KG. Scheduling

Scheduling

Priority range

July 24, 2006

The main difference in scheduling between QNX 4 and QNX Neutrino is that
scheduling is donby thread, not by process. In QNX Neutrino, the highest-priority
thread is chosen to run, regardless of what process it's in.

This has some interesting ramifications. For instance, from a QNX 4 perspective, a
process can preempt itself! Of course, this is minimized when migrating to QNX
Neutrino, since all your processes will be single-threaded.

QNX Neutrino extends the priority range (from 0 to 31)0tthrough 63. Higher
numbers still represent higher priority. Thehed_get priority min() and
sched_get_priority_max() calls simply return the minimum and maximum priority; the
specialidle thread (in the process manager) has priority 0.

At each priority, the threads in QNX Neutrino are scheduled as in QNX 4, with the
exception that there’s no longer an adaptive scheduling policy. The available policies
are FIFO and round-robin, both of which operate the same as in QNX 4.

Remember that these policies come into play only when there’s more than one thread
ready to rurat the same priority.

According to POSIX, there’s a third scheduling algorithm cal&tHED OTHER,
which is up to the OS vendor to decide what it actually means. Currently in QNX
Neutrino,SCHED OTHERIs the same aSCHEDRR (round-robin), but that may
change some day, so we don't recommend uSIBED OTHER

QNX Neutrino supports thgetprio() andsetprio() function calls from QNX 4. But
because the scheduling in QNX Neutrino is by thread, not by process, there’s a caveat
here: When attempting to set the priority of a process by cadiitygrio(), thread

number 1 in the process has its priority changet all threads in the process.

If the process ID given teetprio() is zero, indicating the current process, it's the
calling thread within that process whose priority will be set. Since QNX 4 code ported
to QNX Neutrino would likely contain contain one thread anyway, this is just what
you'd want to have happen.

Because of its increased number of synchronization primitives, as well as the inclusion
of threads, QNX Neutrino has more states than QNX 4:

If a QNX Neutrino thread is in the RUNNING state, then it's the thread that’s
actually using the CPU. And since QNX Neutrino supports SMP, there could be
multiple threads in this state.

When a thread is in the READY state, it wants to execute on a CPU, but it's not
the thread that's executing. This distinction between RUNNING and READY was
not visible to the user in QNX 4.

The SEND-blocked, RECEIVE-blocked, REPLY-blocked, STOPPED,
SEM-blocked, and DEAD states are the same as in QNX 4.

Chapter 3 » Programming Issues 11

Process issues 0 2006, QNX Software Systems GmbH & Co. KG.

QNX Neutrino also has these additional states, which were either slightly different or
not present at all in QNX 4:

If a thread calls thaigsuspend() function, it will be SIGSUSPEND-blocked

awaiting a signal.

If the thread callsigwaitinfo(), it's also waiting for a signal to occur; this is the
SIGWAITINFO-state.

A thread can also request to be suspended for a short period of time by calling
nanosleep(), which puts the thread into the NANOSLEEP state until the time has
expired.

QNX Neutrino adds two synchronization methods (mutex and condvar). If a
thread is awaiting one of these, it would be in the MUTEX state or the CONDVAR
state until the conditions allow the thread to continue.

A thread can calpthread_join() to await the termination of a child thread. If that
thread hasn’t terminated yet, the caller is in the JOIN state until the child thread
terminates.

If a thread, such as one in a device driver, is waiting for an interrupt, it could be in
the INTR statelnterruptWait()) until the interrupt happens and SIGENTR

event is delivered to it.

The QNX Neutringpi di n utility lets you see the thread state under the “STATE”
column. It's roughly analogous tss - ef in QNX 4. In cases where a thread is
blocked awaiting some other thread (e.g. waiting for the reply to a write on a serial
port), the “Blocked” column shown byi di n indicates the thread ID that the thread is
blocked on.

Process issues
Process creation

Thegnx_spawn() function and thenx_spawn_options structure are no longer
supported. Thepawn* () family (spawnl(), spawnve(), ...) of functions still exist.
There’s also a new function callesdawn() that provides much of the functionality in
the gnx_spawn_options structure.

O POSIX has a new function callgubsix_spawn(), which we don't support as of the
time of this writing.

Something similar to the io vectoioy parameter tgnx_spawn() andiov member of
gnx_spawn_options) is available via théd_map to spawn(). However, the FDs passed
in this will be the only ones open for the child.

When calling thespawn() function, note there are some undocumented SPAWAYS.
These are undocumented, because they're mainly intended for people migrating from
QNX 4. They can be found in thespawn. h> header file. Some readily recognizable
ones are:

12 Chapter 3 o Programming Issues July 24, 2006

0 2006, QNX Software Systems GmbH & Co. KG. Native QNX networking

Process flags

e SPAWN.NOZOMBIE

o SPAWN.NEWPGROUP

e SPAWNHOLD

e SPAWNSETSID

e SPAWNTCSETPGROUP

QNX Neutrino also support®rk(), but there’s the restriction thédrk() can’t be used
within a multithreaded process. For this case, you might consfdet() instead.

The following are the issues involved with the most frequently used flags you can set
in QNX 4 using thegnx_pflags() function:

e _PPEIMMORTAL — This is no longer supported. You can’t catch or ignore
SIGKILL.

e _PPEINFORM — This is no longer supported. There’s no replacement that will let
you know of any process dying. You could periodically poll the process manager
by walking through the pids ihpr oc, but this is highly inefficient. For other
methods, see the section on “Process termination” in the chapter on processes in
the Programmer’s Guide.

e _PPFEPRIORITY_FLOAT — This is the default in QNX Neutrino. To disable this
behavior, pass the&NTO_CHF_FIXED_PRIORITY to your call tocChannel Create().

e _PPFEPRIORITY_REC — This is the behavior in QNX Neutrino. It can't be turned
off.

e _PPESIGCATCH — To get this behavior, pass tidéTO_CHF_UNBLOCK flag to
your call toChannel Create().

e PPESERVER — This is no longer supported.

Native QNX networking

The equivalent of FLEET, the QNX 4 native networking, is Qnet. From the command
line, instead of using node IDs (“nids”, you use node names. From code, instead of
using nids, you use node descriptors. For detailed information on these issues, see the
sections called Qnet Networking in tReogrammer’s Guide and System Architecture.

I/O Managers vs Resource Managers

July 24, 2006

QNX Neutrino has the same concept as QNX 4 I/O managers, but they're called
resource managers instead. In QNX 4, unless you had used the 1/O manager
framework available as free software, then you'll have to rewrite most of your I/O
manager from scratch.

Chapter 3 @ Programming Issues 13

Messages

[0 2006, QNX Software Systems GmbH & Co. KG.

Messages

In QNX Neutrino, a resource manager library is provided for you as part of the regular
libraries. This library hides a lot of the gory details, allowing you to concentrate on
code that's specific to your application while still presenting a POSIX front end to the
client.

The downside to this is that migrating I/O managers will likely be the one set of code
that involves the most work, because this is where there are the most differences. The
work is the least if you had used the I/O manager framework that’s available for QNX
4 as free software, since your process will be similar architecturally.

There’s a chapter in the tH&rogrammer’s Guide called “Writing a Resource
Manager” that goes into detail on how to write these.

Connection-oriented philosophy

The QNX Neutrino OS still uses the send/receive/reply model. A receiver still blocks
on some receive function call, a sender still sends via some send function call and
blocks until the receiver replies.

The functions involved are:
e MsgReceive*()

e MsgSend*()

o MsgReply*()

e MsgRead* ()

o MsgWrite*()

There’s still the multipart message option — the above functions whose names contain
a “v” suffix are the multipart message versions (d/ggSendv() is analogous to
Sendmx()).

There’s also an additional function for replying callddgError(). It takes an errno
value as a parameter and causesMlisgSend* () to return with -1 anakrrno set to this
value. TheMsgReply* () also has an interesting new status parameter. Whatever you
pass for this will be what thiMsgSend* () returns.

Channel IDs vs process IDs

There are also some fundamental differences. Under QNX 4, the sender sentto a
process via a process ID, but this no longer works when there could be multiple
threads within the receiving process.

Under QNX Neutrino, some thread in the receiving process creates a channel (via
ChannelCreate()). Then whichever thread or threads want to receive messages from
that channel call MsgReceive* () function, passing it the channel IBhd). So, in

QNX Neutrino, you receive using channel IDs, not process IDs.

14 Chapter 3 e Programming Issues July 24, 2006

0 2006, QNX Software Systems GmbH & Co. KG. Messages

Some thread in the sending process then creates a connection to that channel (usually
via ConnectAttach()). Then whichever thread or threads want to send a message will
send using the connection IRdid) via aMsgSend* () function.

So, in QNX Neutrino, you send througtcannection, not to a process ID. The
MsgReceive* () function returns a receive ID¢vid) and passes this to the
MsgReply*(). So in QNX Neutrino, you reply to a receive ID, not a process ID.

Notice that this is connection-oriented, unlike in QNX 4 where any sender could send
to any receiver just by passing the receiver’s process ID to the send function call. In
QNX Neutrino, the receiver must deliberately advertise its channel ID before any
sender can create a connection to it and send.

How should the receiver be written?

There are various ways to write the receiver. You have the same options as under QNX
4 — from plain receiver all the way to resource managers (called I/0O managers in

QNX 4). The difference is we recommend that you write receivers as resource
managers in QNX Neutrino applications.

One of the reasons for this recommendation is that the resource manager library takes
care of many of the details for you. This is even more important in QNX Neutrino as
there are now more details. For example, in QNX 4 when receiving a message from a
sender on another node of the native QNX network, the number of bytes received was
thesmaller of what the sender was sending and what the receiver was asking to
receive, but no smaller.

Under QNX Neutrino, however, the receiver could potentially have recéessthan

what the sender was sending and the receiver was receiving, depending on the packet
size of the protocol used. The resource manager library handles this detail for you (if
you're not using the resource manager library, see the section “Receiving from across
the network” in this chapter.

Although we recommend writing resource managers, we also recognize that people
migrating from QNX 4 who used a simpReceive() loop may not want to make the

many changes required to convert to resource managers. As such, this section will go
into some detail on doing prop&tsgReceive() handling.

How does the sender find the receiver?

July 24, 2006

We said above that the server creates a channel and advertises the channel ID. The
sender then somehow determines that channel ID and connects to it. But how does the
server advertise the channel ID?

1 If you're willing to rewrite your receivers, or if you previously wrote them as
I/0O managers, then you could write receivers as resource managers. In this case,
the ChannelCreate() is done by the resource manager library and the
ConnectAttach() is done by thepen(). The sender finds the receiver by calling
open():
fd = open(-nane_receive_registered, ...);

Chapter 3 @ Programming Issues 15

Messages

[0 2006, QNX Software Systems GmbH & Co. KG.

[

MsgSend(fd, ...);

One thing that falls very nicely from this is that to connect to a server on another
node of the native QNX network, you need only put hode information on the
front of the name you pass tpen() (e.g.fd =

open("/ net/consol e/ dev/robotarnt, ...)).

Note that a resource manager is the equivalent of an I/0O manager in QNX 4. If
you wrote your I/O managers using the iomanager framewotkiém / f r ee

(or had a similar one of your own) then, although you’ll have to use different
function calls, architecturally the resource manager library and the 1/O manager
framework are very similar.

In QNX Neutrino, there’s a set of functions, includingme_attach() and
name_open(), that do the job thagnx_name_attach() andgnx_name_locate() do
in QNX 4. Note that global names are supported viagihe process.

If the receiver is parent and the sender is child, then the channel ID can be
passed in spawn arguments lists.

If you have a starter process that starts the above two processes, then starter
could create a channel and pass the channel ID to its children via command-line
args. The children would then send their respective channel IDs to starter
(effectively registering with starter) and request each other’s channel IDs from
starter.

The method that you choose depends on how much migrating you wish to do. If you
want to do as little as possible, then the migration library is the starting place. If you
don’t mind rewriting a little of your Send code, theame _attach()/name_open()

might be the way to go. If you're already using I/O managers or want to migrate to
resource managers, then go ahead and do so.

This solution is deprecated for Neutrino, version 6.3.0.

Receiving messages in a resource manager

When looking at writing a resource manager, one of the first things you’'ll wonder
about is how to send messages to it and get replies back. There are various ways:

1

The POSIX way is for the sender to use the PO8&ctl () function call to send

the message. The resource manager would have asevct | handler

registered for processing the message. The only disadvantage to this approach is
that there’s only one message buffer parameter and one size parameter in the
devctl() call. This means that if you want to send a 10-byte message and get a
1000-byte reply back, you must provide a 1000-byte buffer and specify a size of
1000 bytes. Even though the buffer contains only 10 bytes of data for the send
message, it will send the entire 1000 byte buffer.

Another way is to usenessage_attach() to register a range of message types and
a handler to be called whenever a message is received whose type is in that

16 Chapter 3 « Programming Issues July 24, 2006

0 2006, QNX Software Systems GmbH & Co. KG. Messages

range. With this method, the sending can be donéAggSend* () and the entire
contents of the send message and the reply message are in your control.

3 You can send messages usMggSend* () by putting a header of type
i o_neg_t atthe front of your message. Set the type membeaSG. The
resource manager would register a msg handler in the
resngr _cont ext _f uncs_t structure, and when a message of ty@eMSG
arrives, your msg handler will be called with the message. The reply can be
anything.

Don't forget that the above steps show how to send a message and get a reply back. If
all your client wants to do is send some data, thenathigx() function call may be all
you need. Theead() function can be used for the opposite direction.

_PPF_SIGCATCH

Just as QNX 4 has th®PESIGCATCHflag, QNX Neutrino has the
_NTO_CHF_.UNBLOCK flag for the same reasons. In QNX Neutrino, the flag is set for
the channel that's being received on — it's passe@hannel Create(). One difference

is that in QNX 4 this affected REPLY-blocked senders who are hit with a signal. In
QNX Neutrino, it still affects REPLY-blocked senders who are hit with a signal, but
also if they want to time out (vidimer Timeout() or timer timeout()).

The NTO_CHF_.UNBLOCK flag is automatically set for resource managers. If the
receiver is a resource manager, then when the REPLY-blocked sender wants to
unblock, the resource manager library will call anunblock handler. If you don’t
provide an iaunblock handler, then default handling will be done for you resulting in
your client potentially not unblocking when it wants to. Tiogid member of the

resngr _cont ext _t structure (ctp->rcvid— you'll learn about this structure
when you do resource managers) is the one you would reply to and/or use to look up
the sender in a list of blocked senders.

If you're calling MsgReceive* () directly, then a pulse will arrive from the kernel

(pulses are discussed later). The code member of the pulse message will be
_PULSE.CODE.UNBLOCK and the value member of the pulse message will be the
receive ID from the time that thésgReceive* () received the sender’s message. This
receive id is who you would reply to and/or use to look up the sender in a list of
blocked senders. Note that it's generally not a good idea to keep the receive id around
once the reply has been done, because after that point its value is recycled.

Message priority

In QNX 4, the_PPEPRIORITY_REC flag would be used to have messages be received
in the order in which they were sent. In QNX Neutrino, this is automatically the
behavior of the receiver.

July 24, 2006 Chapter 3 @ Programming Issues 17

Events

[0 2006, QNX Software Systems GmbH & Co. KG.

Priority floating

The behavior that you get in QNX 4 by settitRPFPRIORITY_FLOAT is now the
default in QNX Neutrino. To have your receiver’s priority not float, set the
_NTO_CHF_FIXED_PRIORITY flag in the call taChannel Create().

Receiving from across the network

Events

As mentioned above, when receiving a message from a sender on another node of the
native QNX network, it's possible that the number of bytes received could be smaller
than both what the sender was sending and what the receiver was asking for. The
fourth parameter passed to yddsgReceive* () is an info parameter of typst r uct

-nsg-i nf o. It has a member calledsglen, which contains the number of bytes that
were actually copied into your receive buffer. It also has a member cattedglen

which will contain the number of bytes that the sender wants to send, but only if you
pass theNTO_CHF_SENDERLEN flag when callingChannelCreate(). So a code

shippet for handling this situation would be:

i nt chid, rcvid;
struct _msg_info info;
ny _msg_t neg;

chid = Channel Create (_NTO_CHF_SENDER_LEN) ;

for (53) {
rcvid = MsgReceive (chid, &nmsg, sizeof(nsg), & nfo);
if (rcvid >0 & info.srcnsglen > info.nsglen &
info.nsglen < sizeof(msg)) { // got it all?
i nt nbytes;

if ((nbytes = MsgRead_r(rcvid, (char *) nsg + info.nsglen,
sizeof (msg) - info.nsglen, info.nsglen)) < 0) {
MsgError(rcvid, -nbytes); // nbytes contains an errno val ue

}

/1 now we have it all

Later in this chapter we’ll look at pulses, a replacement for QNX 4 proxies that also let
you pass a little information along. We’'ll also examine POSIX signals. Because these
(and other) primitives are similar, there’s an underlying mechanism callegean

that handles them.

An event in QNX Neutrino is a form of notification that can come from a variety of
places: timer, interrupt handler, your threads, etc. An event can contain a pulse. A user
hitting Ctrl — C on a keyboard causes an event containing a signal to be delivered. A
timer could expire, delivering an event containing a pulse.

18 Chapter 3 o Programming Issues July 24, 2006

0 2006, QNX Software Systems GmbH & Co. KG. Proxies vs pulses

A thread delivers an event to another thread by callifsgDeliver Event(). We'll see

an example of this when we talk about pulses. This function takes a receive id and an
event structure of typst ruct si gevent. The latter contains several fields,

including:

sigev_natify The type of the event, whether it's a signal, a pulse, or whatever.
sigev_priority ~ The priority of the event; higher numbers mean higher priority.

sigev_code andsigev_value
The code and value fields for a pulse.

sigev_signo The signal number for a signal.

There are macros in the include fideys/ si gi nf 0. h> that make it simple for you to
fill in the fields in this structure.

Proxies vs pulses

QNX 4 proxies have disappeared from QNX Neutrino. They've been replaced by
pulses. A pulse is like a QNX 4 proxy in one critical way — it@synchronous, so the
sending thread doesn’t block. But the data for QNX 4 proxies was “canned data” that
couldn’t be changed from origigger() call to the next. With pulses, the data can be
different from one “trigger” to the next.

Each QNX Neutrino pulse carries with it two items of information:
e an 8-bit value known as the “code”
e a 32-bit value called the “value”

Although the “code” is a signed quantity, you should use only values in the range
_PULSE.CODE MINAVAIL to _PULSECODE MAXAVAIL. The remaining code
values are reserved for the OS.

Pulses are received by having your resource manager register a pulse-handler function.
This is done by callingulse_attach(). When the pulse arrives, the handler will be
called.

If you're not writing a resource manager, then pulses can also be received by the
MsgReceive* () andMsgReceivePulse* () functions. The return value will be zero and
the message buffer will contain a message of gfpeuct _pul se.

In QNX 4, at setup time, the receiver would typically attach a proxy and send the
proxy id to the process doing the triggering. Whenever necessary, the triggerer would
trigger the proxy. In QNX Neutrino, you'd do something very similar. At setup time,
the receiver would fill an event structure with a pulse and send it to the process doing
the delivering. Whenever necessary, the deliverer would deliver the event using
MsgDeliver Event(). As a result, the receiver would receive a pulse message.

July 24, 2006 Chapter 3 e Programming Issues 19

Proxies vs pulses 0 2006, QNX Software Systems GmbH & Co. KG.

There’s another function for sending a pulse caNéiSendPulse(). When migrating
from QNX 4, you would use this to repladeigger() in cases where the triggering
process had attached the proxy to the receiver (instead of the receiver attaching the
proxy to itself). WithMsgSendPulse() there’s no event structure to fill in.

Example of pulses with a resource manager

The following code snippets illustrate sending and receiving pulses using resource
managers. The deliverer is a resource manager gallesesnd — it registers the
name/ dev/ pul sesnd.

First of all, since we have two processes communicating with each other, we have the
following in a common header file:

/1 _I OMGR_PULSESND i dentifies the pul sesnd resource manager
#defi ne _I| OMGR_PULSESND _| OMGR_PRI VATE_BASE

#def i ne PULSESND_SUBTYPE_G VE_EVENT 1

typedef struct {
struct _io_nsg hdr; /1 standard header for _lI O_MSG nessages
struct sigevent event; // the event to deliver

} pul sesnd_i o_nmsg_gi ve_event _t ;

/1l the reply for | O_MSG_SUBTYPE_G VE_EVENT is enpty

Next, we have the receiver process that will be receiving the pulse. The following is

the code that registers the pulse handler, fills in an event structure, and sends the event
structure to the deliverer:

mai n

{

pul sesnd_i o_nsg_gi ve_event _t nsgQ;

/] setup code for the resource manager goes here
/] register our pulse handler, note that this call will figure out
/1 a pulse code for us, pulse_handler() will be called whenever

/1 the pulse arrives

our _pul se_code = pul se_attach (dpp, MSG_FLAG_ALLOC_PULSE,
0, pul se_handl er, NULL);

/1 send a pul se event structure to pul sesnd, pulsesnd is the

/'l process (another resource manager) that will deliver this pul se
/1 event when data is available. Wen it does, pulse_handler()

/1 will be called.

fd = open ("/dev/pul sesnd", O_RDONLY); // find pul sesnd

/] create a connection to the channel that our resource manager is
/'l receiving on

coid = nmessage—_connect (dpp, MSG_FLAG_SI DE_CHANNEL) ;

/1 fill nessage buffer with an _I O_MSG type nmessage (for this
Il exanpl e)

20 Chapter 3 e Programming Issues July 24, 2006

0 2006, QNX Software Systems GmbH & Co. KG. Proxies vs pulses

msg. hdr.type = _I O_MSG
nmsg. hdr. conmbi ne_l en = si zeof (nsg. hdr);
msg. hdr. mgrid = _I| OMGR_PULSESND; /* resngr identifier */

nmsg. hdr. subt ype = PULSESND_SUBTYPE_G VE_EVENT;

/1 this macro fills in the event structure portion of the nessage
SI GEV_PULSE_I NI T(&rsg. event, coid, getprio (0), our_pul se_code, 0);
/! send it to pulsesnd so that it can deliver it when it wants to

MsgSend (fd, &msg, sizeof(nsg), NULL, 0);

}

I

/1 pul se_handler - WIIl be called when the pulse is delivered

I

int

pul se_handl er (message_context_t *ctp, int code, unsigned flags,
voi d *handl e)

{
if (code == our_pul se_code) {
/1 we got a pulse (we're not expecting any others, this check
/1 is for exanple only)
}
return code;
}

Next we have the code where the deliverer receives the event structure. Note that it is
really a msg type handler that the resource manager library calls whenever a message
of type _IO_MSG arrives. ThelO_MSG that arrives is the message sent to us in the
snippet above. This msg type handler is registered with the resource manager library
just as you would register a read or write handler.

int
io_msg (resngr_context_t *ctp, io_nmsg_t *msg, RESMGR_OCB_T *ocbh)
{
pul sesnd_i o_nmsg_gi ve_event _t pnsg;
/1 go get the nmessage again to nake sure we got it all
MsgRead(ct p->rcvid, &nsg, sizeof(pmsg), 0);
/1 we need to store away the event and the rcvid if we are to
/1 deliver the pulse later. This is the sanme idea as savi ng away
/1 a proxy id in QNX 4.
pul se_event = pnsg. event;
pul serec_rcvid = ctp->rcvid,
MsgRepl y(ct p->rcvid, 0, NULL, 0);
return (_RESMGR_NOREPLY) ;
}

Lastly, when the deliverer process wants to wake up the receiver, it delivers the event.
This is analogous tor i gger (pr oxy) in QNX 4.

July 24, 2006 Chapter 3 » Programming Issues 21

Signal services

[J 2006, QNX Software Systems GmbH & Co. KG.

Signal services

/Il here is where we send the pul se message. Note that pul serec_rcvid
/1 and pul se_event were saved away above.

MsgDel i ver Event (pul serec_rcvid, &pulse_event);

Here are the fundamental changes to signals:

1

There are a whole bunch of new user-defined signals. These range in value from
SIGRTMIN to SIGRTMAX (defined irksi gnal . h>). According to POSIX,
these can carry data and can be queued.

The traditional UNIX signals (SIGINT, SIGHUP, etc.) still exist and in fact are
a part of POSIX. According to POSIX, these cannot carry data and cannot be
gueued. Note, however, that QNX Neutrino doesn’t enforce this restriction, so
theycan carry data and be queued.

As mentioned above, signals can now be queued. Just as in QNX 4, if a signal is
set on a process and that process has the signal blocked (or masked), then the
signal is made pending. Unlike QNX 4, however, if the same signal is set on the
process a second time while the signal is still blocked, QNX Neutrino can
remember that the same signal is now pendivige. When the signal is

unblocked (or unmasked), then the signal action will take place twice. This is a
gueued signal. Itis set on a signal-by-signal basis and is done at the process
level.

The default is that a signal is not queued (i.e. just as in QNX 4). If the signal is
set on the process multiple times while the signal is blocked, when it’s
unblocked the signal will take effect only once. To indicate that a signal is to be
gueued, set thBA _SIGINFOflag in thesa_flags member of thest r uct

si gact i on structure when passing it ggaction().

Signals can also carry data. As wkitl(), sigqueue() can be used to set a signal

on a process. Unlikkill(), sigqueue() has a value parameter. This is data that

will be passed to your signal handler. To access that data, your handler function
will now have a parameter of typa gi nf o_t , which has a member called
si_value. This will contain the value passedsmqueue().

Because of the different handler parameters, you must register your handler
usingsigaction(). In QNX 4, you'd put the address of your handler in the
sa_handler member of thest ruct si gacti on structure. There is now a new
member calleda_sigaction. This is where you would put the address of a
handler that wanted to get data.

You can no longer set SIGKILL and SIGSTOP to be ignored, handled, or
blocked (masked).

There are issues with multithreaded processes (see the next section).

22 Chapter 3 e Programming Issues July 24, 2006

0 2006, QNX Software Systems GmbH & Co. KG. Signal services

Thesignal(), sigaction(), kill(), sigaddset(), sigdel set(), sigemptyset(), sidfillset(),
sigismember (), siglongjmp(), sigpending(), sigprocmask(), sigsetjmp(), and
sigsuspend() functions are used just as in QNX 4. Tseflags member of thest r uct
si gact i on structure that is passed $maction() now has some flags:
SA_NOCLDSTOPandSA_SIGINFO. SANOCLDSTOPtells the system not to call the
handler if the child is stopped vEBIGSTOP(only relevant for theSIGCHLD signal).
SA_SIGINFOstates that the signal is a queued signal.

There are also some new functions:

sigblock()
sigqueue()
sigsetmask()
sigtimedwait()
sigunblock()
sigwait()

sigwaitinfo()

Signals and threads

July 24, 2006

Having threads affects how signals are handled. If, for instance, a given process
contains six threads, and a signal arrives for the process, which thread is the recipient?

Here are the rules for delivering a signal to a process that has many threads:

Signal actions are maintained at the process level. If a certain thread decides to
ignore or catch a signal, this is remembered at a process level (i.e. not for any
specific thread).

Signal masks, however, are maintained thread-by-thread. If a given thread decides
to mask all signals, only that thread is affected.

The first time a particular signal is set on a process, the kernel looks for a thread
that has that signal unmasked. If all threads have the signal masked, then the signal
is made pending at the process level until a thread unmasks it, in which case that
thread will be affected. If more than one thread has the signal unmasked, then the
kernel picks a thread effectively at random. If only one thread has the signal
unmasked, then that thread is affected.

Once a thread as been picked for a particular signal, from then on that particular
signal will always go to that thread.

Because of these rules, an easy approach is to dedicate one thread as the
“signal-handling thread” and mask signals in all threads except that one. This
signal-handling thread could then csijwaitinfo() so as to not consume CPU time
while waiting for the signal.

Chapter 3 » Programming Issues 23

Shared memory 0 2006, QNX Software Systems GmbH & Co. KG.

Shared memory

The QNX Neutrino interface to shared memory usasa_open(), ftruncate(), mmap(),

and so on. Itis almost the same as newer QNX 4 applications. One major difference is
thatftruncate() is used, where in QNX 4 you would have udadnnc(). Another

difference is that the name of a shared memory object must begin with as)ash (
character and contain only one slash to conform to POSIX and to appear in

/ dev/ shmem If a name doesn’t begin with a slash, it will appear in the current
directory. Theshm_ctl() function is also available for setting additional attributes.

If you're used to calling thgnx_segment* () functions, then they’ll need to be
converted tasshm_open(), ftruncate(), mmap() for the new OS. Thenx_segment* ()
functions are no longer supported.

Semaphores

The function calls for semaphores — maisgm_init(), sem_wait(), sem_trywait(),
sem_post(), andsem_destroy() — are supported in QNX Neutrino with no changes
necessary. However, there’s the additiomarfned semaphores.

In QNX 4, a semaphore is typically placed into a shared memory area so that two
processes can share it. The processes must agree in advance where the semaphore is in
memory (“there’s a semaphore at offset such-and-such in the shared memory named
XYZ"). With QNX Neutrino, and multiple threads, it might make sense for an

application to have a semaphore declared locally to a process.

Named semaphores

To make sharing semaphores between processes easier, QNX Neutrino supports
POSIX named semaphores. These are semaphores that can be accessed by a name
instead of having to be placed in shared memory. For named semaphores to work, you
must run thenqueue process. Named semaphores are created and cleaned up using
sem_open(), sem_close(), andsem_unlink().

Note thatsem wait() andsem_post() with an unnamed semaphore use kernel calls to
do their work, whereas the same functions with a named semaphore work by sending
messages to the mqueue process and will be considerably slower.

POSIX Message Queues

The QNX Neutrino interface for POSIX message queues is almost the same as QNX
4. The following are the differences that you'll need to be aware of:

e The name of the message queue serveyigue instead ofvgueue.
e TheMQ._flags are no longer supported.

e The event that you pass tag_notify() has changed in format. Obviously, you can
no longer give it a proxy. You can use a pulse instead.

24 Chapter 3 e Programming Issues July 24, 2006

00 2006, QNX Software Systems GmbH & Co. KG. Timers

Timers

Timeouts

Interrupts

July 24, 2006

The timing functions have changed very little:
e gnx_adj_time() is now ClockAdjust().
e clock_setres() andgnx_ticksize() can be replaced wit@lockPeriod().

e Many people used the Pentiumdt sc opcode for getting a cycle counter. A kernel
call is now provided that does the same thingGleckCycles().

e timer_create() no longer returns the timer ID. Instead, there’s a third parameter that
on successful return, contains the timer ID.

Timeouts can now be done using one of two new functidiser Timeout() or
timer_timeout(). The only difference between the two is the types of the parameters.

Under QNX 4, a timeout could be achieved by having your blocking function be
unblocked by a signal after a certain amount of time elapsed. A problem arises if
you're preempted for longer than the timeout. In that case, when your process gets to
run again, your signal handler would be called and then you'd enter the blocking
function (with no timeout in place, if you didn’t use a repeating timer).

Here’s a code snippet for a timeout oiviagSend(). Note that we're passing
timer _timeout() the possible states fdlsgSend() that we want to timeout.

event.sigev_notify = SI GEV_UNBLOCK;

timeout.tv_sec = 10;

ti meout.tv_nsec = O;

timer _tinmeout (CLOCK_REALTI ME,
—_NTO_TI MEOQUT_SEND | _NTO_TI MEQUT_REPLY,
&event, &t inmeout, NULL);

MsgSend (coid, NULL, 0O, NULL, 0);

Unfortunately, this still isn't perfect, because the timing is relative to the call to

timer _timeout(). However, if you're preempted between timer timeout() and

MsgSend() for longer than the timeout period, the timeout is still waiting to take place,
even though it will be immediate in that case. You also don’t have to cancel the
timeout, since that will be done automatically before MegSend() returns.

The only significant change to writing QNX Neutrino interrupt handlers is that the
task has been simplified slightly.

You'll find a chapter in théProgrammer’s Guide entitled “Writing an Interrupt

Handler.” There’s also a section in the “Writing a Resource Manager” chapter of that
book entitled “Handling interrupts” that shows how to do interrupt handlers from
within a resource managet.

Chapter 3 Programming Issues 25

Hardware 1/0

[J 2006, QNX Software Systems GmbH & Co. KG.

Instead of callingynx_hint_attach(), you would callinterruptAttach(). The last

parameter fognx_hint_attach() was the data segment selector of your process. You no
longer need to provide this. The interrupt handler will simply be using the data
segment of the process that the handler is in.

In QNX 4, your handler was limited to waking up the process via a proxy. In QNX
Neutrino, your handler can return with an event that would contain either a pulse, a
signal, or an event of notify type SIGENNTR. In the latter case, the attaching thread
would block oninterrupt\Wait().

There’s also a new way of handling interrupts — wlititerruptAttachEvent(). In this

case you would fill an event with a pulse, signal, or an event of notify type
SIGEV_INTR. When the interrupt is generated, the kernel will mask the interrupt and
deliver the event, thereby waking up a thread. The thread would then do the required
work and then unmask the interrupt. This masking by the kernel is necessary for
handling level-sensitive interrupts.

As in QNX 4, you're limited as to which functions you can call from within an

interrupt handler. When you look at a function in the library reference manual, one of
the areas under the “Classification” heading shows whether or not you can safely call
the function from an interrupt handler.

Note that just as in QNX 4 you needed I/O privileges to register an interrupt handler,
you still need it under QNX Neutrino. Under the new OS you actually need it for any
Interrupt* () function exceptnterrupt\Wait().

To get I/O privileges under QNX 4, you would link withT1. To get I/O privileges
under QNX Neutrino, you caifhr eadCt | (_.NTO_TCTL_I O, NULL) . Note that you
must ber oot in order to make this call tdhreadCitl ().

There are now functions that can be called from both a thread and the interrupt handler
for masking and unmasking interruptsterruptMask() andInterruptUnmask().

Hardware 1/O

Port 1/0

Port 1/0 on x86 is done using special machine instructions. On some other platforms,
such as PowerPC and MIPS, it's done by mapping in and accessing memory. As such,
there’s one extra function you need to call that basically works outN@Peor x86,

but something else on PowerPC and MIPS. Thatri®gp_device_io(). You pass it the
number of consecutive ports you want to access and the address of the first port. It
simply returns the address of the first port (the same one you gave it). From then on
you use instructions such aw(), out8(), in16(). For addresses, pass them the value
returned bymmap_device_io() (the base port) plus some offset from this base port.

Note that just as in QNX 4 you needed /O privileges to do port I/O, you still need I/0
privileges under QNX Neutrino.

26 Chapter 3 e Programming Issues July 24, 2006

0 2006, QNX Software Systems GmbH & Co. KG. Hardware 1/0O

To get I/O privileges under QNX 4, you would link withT1. To get I/O privileges
under QNX Neutrino, you caffhr eadCt | (_NTO_TCTL_I O, NULL) . Note that you
must ber oot in order to make this call tdhreadCitl ().

The following is a short example of doing port I/O in QNX Neutrino:

#defi ne SERI AL_BASE_PORT 0x2f 8

#alefi ne R_IE 1 /* interrupt enable */

#alefi ne R_LS 5 /* line status */

al#;jlefine NPORTS 8 /* no. of ports from base port */
uintptr_t iobase; /* base of io menory (io ports) */
/* initialization, need to do only once */

ThreadCt| (_NTO_TCTL_I O, NULL);
i obase = mmap_devi ce_i o (NPORTS, SERI AL_BASE_PORT);

/* wait for the transmit holding register to be empty */
while ((in8(iobase + R_LS) & 0x20) == 0)

/* Enabl e just the nobdem status as an interrupt source */
out8 (iobase + R_IE, 0x08);

Memory-mapped I/O

When programming for QNX 4, you occasionally need to access physical memory.
Typically, this is done for memory-mapped devices (e.g. the PC video RAM). Under
QNX Neutrino, the situation is slightly different from QNX 4, but no more complex.
There are, moreover, several ways to map physical memory.

The simplest method is to call the QNX Neutrimonap_device_memory() function:
vi rtual _address = nmap-devi ce_nenory(NULL, | ength,

PROT_READ | PROT_WRI TE | PROT_NOCACHE,
MAP_SHARED | MAP_PHYS, physical _address);

The above call tanmap_device_memory() just does the following:

virtual _address = mmap(O, |ength,
PROT_READ | PROT_WRI TE | PROT_NOCACHE,
MAP_PHYS | MAP_SHARED, NOFD, physical _address);

Note that in neither case do you have to chth_open() as you do in QNX 4.

July 24, 2006 Chapter 3 e Programming Issues 27

Getting system information 0 2006, QNX Software Systems GmbH & Co. KG.

Memory for DMA

DMA requires that the OS allocate some memory for use by your driver and the DMA
controller. You need the virtual address of this memory and the controller needs the
physical address. This can all be done using the following code:

vi rtual _address = nmap(0, |ength,
PROT_READ | PROT_WRI TE | PROT_NOCACHE,
MAP_PHYS | MAP_ANON, NOFD, 0);
mem.of f set (vi rtual _address, NOFD, |ength, &physical _address, 0);

Your driver code would use thertual address and would givephysical addressto the
controller.

PCI functions

QNX 4 has a set of functions whose names begin with_PCI _*(). The analogous
functions for QNX Neutrino are callggki _* (). Note that for QNX Neutrino you must
also run a PCI server process (eugi - bi os). There are no special compile options
or stack issues. You also need to gall_attach() to connect to the PCI server before
making any othepci_*() calls.

Getting system information

Thegnx_osinfo() function is no longer available. Instead, information can be gathered
from a number of places. Not all of the corresponding information that was available
from gnx_osinfo() is either available or relevant. See the source foqgtheosinfo()
function in the migration library to see how to get information for fields for which
there is information available. Note that to get a QNX Neutrino-style nodename (the
nodename member of thest r uct _osi nf o structure), you can catietmgr _ndtostr ().

Getting process information

Under QNX 4, this was done by repeated callgt@_psinfo(). As a resource manager

in QNX Neutrino, the process manager makes visible the proc filesystgmdof s).

If you have a look at the contents iofr oc you'll see some numbers. These numbers

are the process IDs of the processes that are currently executing. To get information on
them, you open them and then maldesctl() calls to the resulting file descriptor. See

the source for thenx_psinfo() function in the migration library to see how to do this

for a specific process or to walk through all processes. Keep in mind that where under
QNX 4 some information would be process-related (e.g. state, blocked on) this
information is now thread-related.

The term_() Functions

28

The QNX 4 functions such d@erm_delete_char(), which originated with QNX 2.1, are
not supported under QNX Neutrino.

Chapter 3 ¢ Programming Issues July 24, 2006

0 2006, QNX Software Systems GmbH & Co. KG. The term_() Functions

A program using these would need to be reimplemented to use something like curses.
Also, the Watcom text calls such agettextcursor (), and the graphics calls like
_pg.initchart(), are not supported. Basically, anything in the Watcom Graphics Library
Reference is not available in QNX Neutrino.

July 24, 2006 Chapter 3 e Programming Issues 29

Chapter 4

July 24, 2006

In this chapter. ..

A suggested approach 33

Get to know QNX Neutrino 33
Install the OS 33

Move your environment 33
Move your utilities 34

Plan! 34

Moving a program 34

Migration Methodology

Chapter 4 » Migration Methodology 31

0 2006, QNX Software Systems GmbH & Co. KG. A suggested approach

A suggested approach

This section is intended to discuss one way that you might approach the migration of
your applications from QNX 4 to QNX Neutrino. It certainly isn’t the only way, and
probably not the best way for every migration situation. However, it does offer a
starting point for your planning and covers a number of common situations.

Get to know QNX Neutrino

Since you're moving to a new environment, your first step should be to gain some
experience with the capabilities of the QNX Neutrino OS. Although this guide points
out most of the items you’ll have to look after during the migration, there’s no
substitute for getting your feet wet and finding out exactly how things really work.

The next few sections indicate one way you can build up this experience. If you don’t
take time to become familiar with the new OS before starting a serious migration
project, you'll probably expend much more effort than necessary and have a number
of false starts.

Install the OS

The first step is obviously to install your development system. As specified in the
“Compiler & tools” section of the Development Environment chapter, your choice of
hosts are:

e QNX Neutrino
e MS-Windows
e Solaris

Your migration task will be a lot easier if you can access your target system over the
network using NFS or CIFS. This allows you to:

e produce a new executable on your host
e switch over to your target

e run the executable.

Move your environment

The first thing you should do is move your environment. Most of you will have
customized the standard QNX environment in many ways with shell scripts and utility
programs. Moving this material to QNX Neutrino will give you:

e an initial familiarity with the QNX Neutrino utilities. Many of these will be the
same, but some may differ.

e a stable reference point to work from during the migration, one that you are
familiar with and feel comfortable with.

July 24, 2006 Chapter 4 o Migration Methodology 33

Move your utilities

[0 2006, QNX Software Systems GmbH & Co. KG.

Move your utilities

Plan!

This is where you can start to get a feel for what problems you'll face during the
migration of your major applications. Moving your utilities will not only give you a
good feel for migration problems, but will also ensure that your standard tools are
available to you when the serious work starts.

The section “Moving a program” provides some initial suggestions on how to deal
with individual programs.

Keep records on the effort required to migrate each utility. This will give you an
estimating base when you come to plan the migration of your major applications.

Good planning is the key to a successful migration. The following points provide a
starting point for your planning efforts.

e Make an inventory of the third-party software needed for your applications and
verify when that software (or equivalent) will be available under QNX Neutrino.

e Establish which applications will migrate to the new OS. It may be that some
applications are due for major rewrite and/or upgrade and it may make sense to
start with a new QNX Neutrino-based design in some of these cases.

e Establish the order in which applications will migrate. If there are inter-application
dependencies, identify them and decide how to deal with them, bearing in mind
that applications can communicate between QNX 4 and QNX Neutrino either by
moving data from one environment to the other or by IPC over serial links or
TCP/IP (but not through native QNX message passing).

¢ You should develop good estimates of the time required to migrate each
application. If you have already converted your utility programs, you'll have a
yardstick to help in your estimation of the migration effort.

Moving a program

Analysis

The following steps will be needed for each program.

You can use thei g4nt o utility supplied with the migration kit to identify the major
areas in each program that need attention. This utility identifies functions in your
source programs that may require attention and provides succinct suggestions as to a
course of action in each case. This utility is fully described in the next chapter.

34 Chapter 4 Migration Methodology July 24, 2006

0 2006, QNX Software Systems GmbH & Co. KG. Moving a program

Architectural issues

First you must determine whether, through use of obsolete QNX functions or for other
reasons, there are any architectural reasons why the program won’t migrate as is.
Perhaps the program performs a function that’s unique to QNX 4 and isn’t necessary
in QNX Neutrino. Or maybe a serious redesign is required because the program is too
tightly bound to QNX 4 facilities. Programs in this class should be rare, but they do
have to be identified and strategies for dealing with them must be developed.

Converting header files

This is largely a mechanical job, but it needs to be done for each program. Many
header filenames and contents have changed.

Converting pathnames

If you have hard-coded pathnames in you programs, they may need to be converted.
This will be the case with nodename syntax. In QNX 4 a node was denoted using

/ 1 nid wherenid was the network identifier. Nodes of a QNX Neutrino network are
different.

Converting functions, etc.

The last step is to convert your program to use QNX Neutrino functions, manifests,
and data structures. The output from the4nt o utility will be very helpful at this
stage.

July 24, 2006 Chapter 4 o Migration Methodology 35

Chapter 5
The m g4nt o Utility

In this chapter...

m g4nt o 39

July 24, 2006 Chapter 5 » The i g4nt o Utility 37

0 2006, QNX Software Systems GmbH & Co. KG. m g4nt (0]

m g4nt o

Syntax:

Options:

Description

July 24, 2006

Identify itemsin QNX 4 programs requiring attention (QNX)

m g4nto [-qsr] [-o output_directory] [file. ..]

-q Be quiet; don't display progress information.

-s Be strict; allow for only those functions that are ANSI/POSIX-compatible.
This option reports on all functions covered by the migration library. If you
don't specify this option, functions covered by the migration library aren’t
identified.

-r Produce report only; don’t produce a copy of marked-up source.

- 0 output_directory
The directory where you want annotated source files to be written.

file The pathname of a file containing a C source program or header file.

Theni g4nt o utility helps you identify areas in your programs that will need attention
during the migration process. This utility copies source files, then inserts comments
above each source line that contains a function name or C preprocessor manifest name
requiring attention. These comments include brief suggestions as to a course of action.

The marked-up files are written to a directory other than the one from which their
corresponding source files were read. You specify this directory withdragpotion.

For each file it examines, the g4nt o utility also provides a summary report listing

the items in the file that require attention and the lines on which these items are found.
If you want to generate this summary report without also generating annotated
program files, then specify the option.

While processing filesyi g4nt o normally keeps you informed of its progress. But if
you want to run the utility in the background, you can specify-th@ption to prevent
status messages from being displayed.

For each input filepi g4nt o creates an output file in the directory specified by-the
option. Each source line containing items that require attention is preceded by a
special comment line or lines.

Chapter 5 » The i g4nt o Utility 39

m g4nt (0] 0 2006, QNX Software Systems GmbH & Co. KG.

Examples:

Annotate all the C source files in the current directory, and place the output files in the
/ nt o/ sr c directory.

mg4nto -o /nto/src *.c

Annotate all the C source files in the current directory, and place the output in the
/ nt o/ src directory. Place the summary report in the report file.

mg4nto -o /nto/src -s *.c > report

Exit status:

0 No files needed attention.
1 One or more files contained items needing attention.

>1 An error occurred.

If a file can’'t be opened for reading or writing, or if an I/O error occurs while reading
or writing a file, the output file is removed and processing is continued with the next
file. The final exit status will be greater than one.

40 Chapter 5 e The mi g4nt o Utility July 24, 2006

Chapter 6
The Migration Library

In this chapter. ..

The migration process managet ¢4nt o- procngr) 43
The migration library functions 44

July 24, 2006 Chapter 6 o The Migration Library 41

0 2006, QNX Software Systems GmbH & Co. KG. The migration process manager (m g4nt o- pr ocngr)

The migration library is a set of functions that implement many of the QNX 4
functions that are no longer supported or are different in the new OS.

There’s also a migration process managemént o- pr ocngr) that must be run for
some of the library functions to work.

N In the list of migration functions given below, functions that require
m g4nt o- procngr are indicated as such. If a process does call functions that require
m g4nt o- procnyr , then you must call thenig4nto_init() function at the very
beginning of your program. See the descriptionrfog4nt o- pr ocrgr below for
more on this.

The migration process manager (m g4nt o- procnygr)

Provides numerous features of the migration library (QNX)

Syntax:
m g4nt o- procngr [-ntv]
Options:
-n QNX 4-style network ID (id) (default: 1)
-t Number of threads for relaying proxy messages (default: 4)
-V Be verbose. Use more v's for more information.
Description

The migration process manager provides services such as hame registration and name
location, proxy registration and sending, and storage. Basically, it provides things
thatPr oc32 does under QNX 4 but that ocnt o (the QNX Neutrino equivalent)

doesn’t provide (or doesn't provide in the same way).

Triggering of proxies using this library can be much slower than in QNX 4. If a

process triggers a proxy and that proxy isn't attached to the triggering process, then

the triggerer sends a messageitg4nt o- pr ocngr . Theni g4nt o- pr ocngr

process has a number of threads dedicated to receiving these trigger messages (see the
-t option above). When one of these threads receives the trigger message, it replies
back immediately. It then sends a message to the process that the proxy is attached to.
The reason for having thEigger() function send tavi g4nt o- pr ocngr is so that it

will know if the proxy is a valid one.

Many of the functions in the migration library require that they4nt o- pr ocnyr
process be running. If using any of these functions, you must alsonaghto_init()
at the very beginning of you program, preferably the first thingnain(). One of the
reasons for this is thaig4nto_init() creates a channel by callifighannel Create().
The channel ID returneshust be 1 — calling this function very early ensures this.

July 24, 2006 Chapter 6 o The Migration Library 43

The migration library functions 0 2006, QNX Software Systems GmbH & Co. KG.

Migration functions that require m g4nt o- pr ocngr

The following functions needi g4nt o- pr ocngr to be running:
e dev_arm()

e getnid()

e migdnto_init()

e gnx_name_attach()
e gnx_name_detach()
e gnx_name_locate()
e gnx_name_query()
e gnx_proxy_attach()
e gnx_proxy_detach()
e Readmsg()

e Readmsgmx()

o Receive()

e Receivemx()

e Reply()

e Replymx()

e Send()

e Sendmx()

e Trigger()
e Whritemsg()
o Whritemsgmx()

The migration library functions

The following functions are in the migration libraryi(bni g4nt 0. a). The only
include needed isnmi g4nt o. h>. Note that full source is available.

Rather than repeat the contents of the QNX 4 documentation, only the differences
from QNX 4 implementation are given below. Note that no attempt was made to keep
theerrno failure values the same.

44 Chapter 6 The Migration Library July 24, 2006

0 2006, QNX Software Systems GmbH & Co. KG. The migration library functions

block _read()

block_write()

dev_arm()

dev_info()

dev_insert_chars()

dev_ischars()

July 24, 2006

The block number has been changed from 1-based to 0-based.

The block number has been changed from 1-based to 0-based. The QNX 4
block_write(), when applied to a regular file, would never grow it; the QNX Neutrino
writeblock() function (which this migration function uses) may cause a regular file to
be extended if writing occurs beyond the end-of-file.

Only the following are supported:
e _DEV_EVENT.INPUT

e DEV_EVENT.OUTPUT

e DEV_EVENT_EXRDY

e _DEV_EVENT.DRAIN

Requiresr g4nt o- pr ocngr to be running.

If the call is successful, the following members of the info structure are filled:

int unit Unit number of this device (e.d.dev/ con2 would have a unit of 2).

nid-t nid The network ID where this device exists. Note that this will contain a
QNX Neutrino node descriptond), not a QNX 4 network IDfid).

pid_t driver_pid
Process ID of the driver that controls this device.

char driver _type[16]
A symbolic name describing the device nature.

char tty_name[MAX_TTY_NAME]
A complete pathname that may be used to open his device.

Same as QNX 4 implementation.

Same as QNX 4 implementation.

Chapter 6 o The Migration Library 45

The migration library functions 0 2006, QNX Software Systems GmbH & Co. KG.

dev_mode()

_DEV_OSFLOWis not supported.

dev_read()

The proxy and armed parameters are not supported.

dev_readex()

This gets the out-of-band data fraavc- * drivers (uses the

DCMD_CHR GETOBAND of devctl()). The return value is the number of bytes read,
but isnot obtained from the driver. Instead, this function estimates the number of
bytes by filling the buffer with zeros before doing ttevctl() and then after the
devctl() has returned, counting the number of leading non-zero bytes.

dev_size()

Same as QNX 4 implementation.

dev_state()

This only lets you query the current state. Thiaits and __mask parameters are
ignored.

The following can be returned:

_DEV_EVENT_INPUT
Input is available from the device.

_DEV_EVENT_DRAIN
The output has drained on this device.

_DEV_EVENT_EXRDY
An exception or out-of-bound character is available to be readdettreadex()

_DEV_EVENT_OUTPUT
There's room in the output buffer to transmit N chars (by default, N is 1).

disk_get_entry()

This usegdevctl() with the DCMD_CAM _DEVINFO command. See
<sys/ dcnd_cam h> and<sys/ cam.devi ce. h>.

You may want to use the diredéevctl()s that build this, because they’re more useful
and have better field definitions (e.g. “cylinders” in QNX Neutrino is 32-bit, but only
16 in QNX 4; large EIDE disks have already wrapped this due to geometry
translation).

46 Chapter 6 e The Migration Library July 24, 2006

0 2006, QNX Software Systems GmbH & Co. KG. The migration library functions

disk_space()

It may be better to switch directly ®iatvfs(), which has additional fields that may be
useful (such as the block size, the mount flags, etc).

fsys_get_mount_dev()

fsys_get_mount_pt()

getnid()

mig4nto_init()

gnx_hint_attach()

gnx_hint_detach()

gnhx_name_attach()

July 24, 2006

Same as QNX 4 implementation.

Same as QNX 4 implementation.

This returns the network id passedntiog4nt o- pr ocngr through the n option. The
m g4nt o- procngr process defaults this to 1.

Requiresri g4nt o- pr ocngr to be running.

This must be called before most library functions are called (see the list under the

m g4nt o- procnygr section above). It should be called as the first or one of the first
things inmain(). The reason is that it creates a channel for receiving messages on, and
the channel ID must be 1. This will be true only for the first calCtwannel Create().

Calling this early ensures that this will be the case.

Requiresni g4nt o- pr ocngr to be running.

QNX Neutrino interrupt handlers can return with an event that contains a pulse. QNX
4 interrupt handlers can return a proxy. In order for this to still work, this function
installs its own QNX Neutrino interrupt handler that will call the given interrupt
handler. So when the interrupt is generated, iislen handler is called. The hidden
handler calls the given handler. If the given handler returns with a proxy (non-zero
value), then the hidden handler returns a pulse event. The proxy value is stuffed into
the event.

The Receive* () migration functions watch for this pulse event. When they receive it,
they pull the proxy value from the pulse message and return with it.

Same as QNX 4 implementation.

The only valid values for nid are 0 and the local nid (gotten frarg4nt o- pr ocnygr).

Requiresr g4nt o- pr ocngr to be running.

Chapter 6 o The Migration Library 47

The migration library functions 0 2006, QNX Software Systems GmbH & Co. KG.

gnx_name _detach()

The only valid values for nid are 0 and the local nid (gotten frarg4nt o- pr ocnyr).

Requiresri g4nt o- pr ocngr to be running.

gnx_name_locate()

The only valid values for nid are 0 and the local nid (gotten frarg4nt o- pr ocnyr).

Requiresri g4nt o- pr ocngr to be running.

gnx_name_query()

The only valid values for prapid are 0 and PRO®ID.

Requiresri g4nt o- pr ocngr to be running.

gnx_osinfo()

The fields in theosdat a structure are set to the following values:

tick_size — the current ticksize or resolution of the realtime clock in microseconds.

version — Neutrino 2.0, for example, reports a version of 200, where QNX 4.25
reported 425.

sflags — a bitfield containing:

_PSEPROTECTED — running in protected mode.
_PSENDP_INSTALLED — FPU hardware is installed.
_PSEEMULATOR_INSTALLED — An FPU emulator is installed
_PSEPCIBIOS — A PCI BIOS is present
_PSE32BIT_KERNEL — 32-bit kernel is being used.

nodename QNX 4 nid retrieved from thei g4nt o Name Resource Manager.
cpu — processor type (486,586,...)

machine — name of this machine on the network.

totpmem — total physical memory.

freepmem — free physical memory.

totmemk — total memory in Kb, up to USHORMAX (65535).

freememk — free memory in Kb, up to USHORMAX (65535).

cpu_features— contains CPU speed in MHz.

The remaining fields are set to MIGANTONSUPP.

48 Chapter 6 e The Migration Library July 24, 2006

0 2006, QNX Software Systems GmbH & Co. KG. The migration library functions

gnx_proxy attach()

gnx_proxy _detach()

gnx_psinfo()

July 24, 2006

Requiresri g4nt o- pr ocngr to be running.

Requiresri g4nt o- pr ocngr to be running.

Some of the information associated with a process in QNX 4 is associated with a
thread in QNX Neutrino (e.g. state, blocked, ...). The assumption here is that if
you're migrating a QNX 4 process to QNX Neutrino, you'll have only one thread, so
this information is taken from the thread with ID 1 (thin() thread).

The following fields are populated:

e pid — the process ID

e blocked_on — what process is blocked on (pid).
e pid_group — process group

e ruid —real user ID

e rgid—real group ID

e euid — effective user ID

e ggid — effective group ID

e umask — process umask

e sid—session ID

e signal_ignore — process signal ignore mask

e signal_mask — thread signal block mask

e state— thread state

e priority — process priority

e max_priority — max priority

e sched_algorithm — scheduling policy (round-robin or FIFO)

e un.proc.name — the name of the program image. This name is limited to 100 bytes
including the NULL.

e un.proc.father — parent process
e un.proc.son — child process

e un.proc.brother — sibling process

Chapter 6 e The Migration Library 49

The migration library functions

[0 2006, QNX Software Systems GmbH & Co. KG.

e un.proc.times— all times set to zero

All other psdat a structure elements are set to MIGANTINSUPP.

QNX Neutrino doesn’t support time-accounting information, so the members of the
t ms structures are always set to 0.

Thegnx_psinfo() function can currently examine processes only, as there arprrux
entries for virtual circuits and pulses.

The only valid values foproc_pid are 0 and PRO®ID.

Thesegdata parameter is ignored.

gnx_spawn()

Here are some notes regarding the parameters:

__msgbuf
__sched_algo

_flags

_ov

__ctfd

Readmsg()

This is ignored.

QNX 4 and QNX Neutrino use the same names for scheduling
algorithms, but their values are different. Be very careful if you're
not just recompiling with the macros from the QNX Neutrino header
files.

Note also that in the new OS, SCHEDTHER is SCHEDRR. QNX
Neutrino doesn’'t have QNX 4's adaptive scheduling algorithm. As
such, there’s no equivalent of SCHHEHEAIR.

The _SPAWNXCACHE flag is not supported.

If this is given, then unlike QNX 4, the FDs passed within it will be
the only ones inherited by the child. This is true even for the IOVs
that are -1.

This returns -1 and sets errno to EINVAL if thectfd parameter is
anything other than -1.

Requiresri g4nt o- pr ocngr to be running.

Readmsgmx()

Requiresni g4nt o- pr ocngr to be running.

Receive()

50

Requiresr g4nt o- pr ocngr to be running.

Chapter 6 ¢ The Migration Library

July 24, 2006

0 2006, QNX Software Systems GmbH & Co. KG. The migration library functions

Receivemx()

Reply()

Replymx()

Send()

Sendmx()

Trigger()

Writemsg()

Writemsgmx()

Yield()

July 24, 2006

Requiresri g4nt o- pr ocngr to be running.

Requiresri g4nt o- pr ocngr to be running.

Requiresri g4nt o- pr ocngr to be running.

This function creates a connection for each process that is sent to. Once the message
has been sent, the connectiomit detached. Instead, the connection ID is cached in
case further messages are sent to the same process.

Requiresri g4nt o- pr ocngr to be running.

This function creates a connection for each process that is sent to. Once the message
has been sent, the connectiomit detached. Instead, the connection ID is cached in
case further messages are sent to the same process.

Requiresni g4nt o- pr ocngr to be running.

If triggering a proxy that is attached to the calling process, then this uses a pulse.

If triggering a proxy that is attached to another process, then this sends a message to

m g4nt o- procngr, which has a set of dedicated threads for receiving this message.
When one of those threads receives the message, it replies immediately and then sends
a message to the process that the proxy is attached to.

The reason for going through g4nt o- pr ocngr is that theTrigger() function will at
least know whether or not the proxy is a valid one.

Requiresri g4nt o- procngr to be running.

Requiresri g4nt o- pr ocngr to be running.

Requiresni g4nt o- pr ocngr to be running.

Same as QNX 4 implementation.

Chapter 6 o The Migration Library 51

Appendix A

QNX 4 Functions & QNX Neutrino
Equivalents

July 24, 2006 Appendix: A « QNX 4 Functions & QNX Neutrino Equivalents 53

[0 2006, QNX Software Systems GmbH & Co. KG.

This appendix lists the QNX 4 C library functions along with their QNX Neutrino
equivalents. For functions that have no direct replacement, you'll find either a cover
function or a suggested workaround.

abstimer()
QNX Neutrino equivalent:
timer _settime(CLOCK_REALTIME, TIMER_ABSTIME, ...)

In migration library?
No

_asctime()
QNX Neutrino equivalent:

extern char *asctime_r(const struct tm*__timeptr, char
* __buff);

In migration library?
No

This call is a drop-in replacement.

_bcalloc()
QNX Neutrino equivalent:
calloc()

In migration library?
No

QNX Neutrino doesn’t support segment-based functions.

_beginthread()
QNX Neutrino equivalent:

pthread_create()

In migration library?
No

N A thread in QNX 4 is really just a separate process that shares the data segment of its
parent, whereas a thread in QNX Neutrino is really witthiesame process as its
parent and shares a great deal more.

July 24, 2006 Appendix: A ¢ QNX 4 Functions & QNX Neutrino Equivalents 55

[0 2006, QNX Software Systems GmbH & Co. KG.

_bexpand()
QNX Neutrino equivalent:
realloc()

In migration library?
No

QNX Neutrino doesn’t support segment-based functions. You careadec() in

place of this, but beware thegalloc() will move your memory block to a new address
if needed, andbexpand() will fail rather than move your memory block to a new
address.

_bfree()
QNX Neutrino equivalent:

free()

In migration library?
No

QNX Neutrino doesn’t support segment-based functions.

_bfreeseq()
QNX Neutrino equivalent:

free()

In migration library?
No

QNX Neutrino doesn’t support segment-based functions.

_bgetcmd()
QNX Neutrino equivalent:
Parse the argument vector passethéin() instead.

In migration library?
No

QNX Neutrino doesn’t support segment-based functions.

56 Appendix: A e QNX 4 Functions & QNX Neutrino Equivalents July 24, 2006

[0 2006, QNX Software Systems GmbH & Co. KG.

_bheapchk()
QNX Neutrino equivalent:
mallopt() with MALLOC _VERIFY

In migration library?
No

See theral | oc _g library described in the “Heap Analysis” chapterRrogrammer’s
Guide.

_bheapmin()
QNX Neutrino equivalent:
No longer supported.

In migration library?
No

_bheapseg()
QNX Neutrino equivalent:
No longer supported.

In migration library?
No

_bheapset()
QNX Neutrino equivalent:
mallopt() with MALLOC _VERIFY

In migration library?
No

See theral | oc _g library described in the “Heap Analysis” chapterRrogrammer’s
Guide.
_bheapshrink()

QNX Neutrino equivalent:
No longer supported.

In migration library?
No

July 24, 2006 Appendix: A ¢ QNX 4 Functions & QNX Neutrino Equivalents 57

[0 2006, QNX Software Systems GmbH & Co. KG.

_bheapwalk()
QNX Neutrino equivalent:
No longer supported.

In migration library?
No

See themal | oc _g library described in the “Heap Analysis” chapterRrogrammer’s
Guide.
block_read()

QNX Neutrino equivalent:
readblock() as follows:

readbl ock(fil edes, 512, block - 1, nblocks, buf)

In migration library?
Yes

N The block number has been changed from 1-based to 0-based.

block_write()
QNX Neutrino equivalent:
writeblock() as follows:

writebl ock(filedes, 512, block - 1, nblocks, buf)

In migration library?
Yes

O The block number has been changed from 1-based to 0-based. When applied to a
regular file, the QNX dblock_write() would never grow the file; theritebl ock()
function may cause a regular file to be extended if writing occurs beyond the
end-of-file. Note that the cover function in the migration library celgebl ock().

58 Appendix: A e« QNX 4 Functions & QNX Neutrino Equivalents July 24, 2006

0 2006, QNX Software Systems GmbH & Co. KG.

_bmalloc()

QNX Neutrino equivalent:
malloc()

In migration library?
No

QNX Neutrino doesn’t support segment-based functions.

_bmsize()
QNX Neutrino equivalent:
_msize(), _musize(), andDH_ULEN()

In migration library?
No

See theral | oc _g library described in the “Heap Analysis” chapterRrogrammer’s
Guide.

_bprintf()
QNX Neutrino equivalent:
snprintf()

In migration library?
No

_brealloc()

QNX Neutrino equivalent:
realloc()

In migration library?
No

QNX Neutrino doesn’t support segment-based functions.

_CA_PCI_* functions

The following functions aren’t in the migration library:

QNX 4 function: QNX Neutrino equivalent:
_CA_PCI_BIOS Present() pci _present()

continued. ..

July 24, 2006 Appendix: A « QNX 4 Functions & QNX Neutrino Equivalents 59

[0 2006, QNX Software Systems GmbH & Co. KG.

cgets()

_clear87()

clock setres()

console_active()

ONX 4 function:

QNX Neutrino equivalent:

_CA_PCI _Find_Class()

_CA_PCI _Find_Device()

_CA_PCI _Generate_Special Cycle()
_CA_PCI _Read_Config_Byte()
_CA_PCI __Read_Config_DWord()
_CA_PCI _Read_Config_Word()
_CA_PCI_Write_Config_Byte()
_CA_PCI _Write_Config_DWbrd()
_CA_PCI _Write_Config_Word()

QNX Neutrino equivalent:

pci_find_class()
pci _find_device()

No longer supported
pci_read_config8()

pci _read_config32()
pci _read_config16()
pci _write_config8()

pci _write_config32()
pci _write_config16()

Set/ dev/ t ty as standard output and cgéts().

In migration library?
No

QNX Neutrino equivalent:
No longer supported.

In migration library?
No

QNX Neutrino equivalent:
ClockPeriod()

In migration library?
No

QNX Neutrino equivalent:
No longer supported.

In migration library?
No

60 Appendix: A « QNX 4 Functions & QNX Neutrino Equivalents

July 24, 2006

[0 2006, QNX Software Systems GmbH & Co. KG.

console_arm()
QNX Neutrino equivalent:
No longer supported.

In migration library?
No

console close()
QNX Neutrino equivalent:
No longer supported.

In migration library?
No

console_ctrl()
QNX Neutrino equivalent:
No longer supported.

In migration library?
No

console_info()

QNX Neutrino equivalent:

tcgetsize() for the number of rows and columns — the remainder is no longer
supported.

In migration library?
No

console_open()
QNX Neutrino equivalent:
No longer supported.

In migration library?
No

console_protocol()

QNX Neutrino equivalent:
No longer supported.

In migration library?
No

July 24, 2006 Appendix: A « QNX 4 Functions & QNX Neutrino Equivalents 61

[0 2006, QNX Software Systems GmbH & Co. KG.

console_read()

console size()

console_state()

console_write()

_control87()

cprintf()

QNX Neutrino equivalent:
No longer supported.

In migration library?
No

QNX Neutrino equivalent:

tcgetsize() for the number of rows and columns — you can't set the size.

In migration library?
No

QNX Neutrino equivalent:
No longer supported.

In migration library?
No

QNX Neutrino equivalent:
No longer supported.

In migration library?
No

QNX Neutrino equivalent:
See<f pst at us. h>

In migration library?
No

QNX Neutrino equivalent:

Set/ dev/ t t y as standard output and captlintf().

In migration library?
No

62 Appendix: A « QNX 4 Functions & QNX Neutrino Equivalents

July 24, 2006

[0 2006, QNX Software Systems GmbH & Co. KG.

cputs()

Creceive()

Creceivemx()

crypt()

July 24, 2006

QNX Neutrino equivalent:
Do fputs() to/ dev/ t t y instead.

In migration library?
No

QNX Neutrino equivalent:
MsgReceive() preceded immediately by:
event.sigev_notify = SI GEV_UNBLOCK;

Ti mer Ti meout (CLOCK_REALTI ME, _NTO_TI MEQUT _RECEI VE,
&event, NULL, NULL);

In migration library?
No

QNX Neutrino equivalent:
MsgReceivev() preceded immediately by:

event.sigev_notify = SI GEV_UNBLOCK;
Ti mer Ti meout (CLOCK_REALTI ME, _NTO_TI MEQUT_RECEI VE,
&event, NULL, NULL);

In migration library?
No

QNX Neutrino equivalent:
crypt()

In migration library?
No

The QNX Neutrino version is Unix-compatible. For the QNX 4 versigmx_crypt().

Appendix: A e« QNX 4 Functions & QNX Neutrino Equivalents

63

[0 2006, QNX Software Systems GmbH & Co. KG.

cscanf()

_ctime()

cuserid()

dev_arm()

dev _fdinfo()

QNX Neutrino equivalent:
Set/ dev/ t ty as standard input and catlanf().

In migration library?
No

QNX Neutrino equivalent:
ctime_r()

In migration library?
No

QNX Neutrino equivalent:
geteuid() for the user ID number followed byetpwent() to find the user name.

In migration library?
No

QNX Neutrino equivalent:
Seeionotify().

In migration library?

Yes — coversDEV_EVENT_INPUT, DEV_EVENT_OUTPUT,
_DEV_EVENT_EXRDY, and_DEV_EVENT_DRAIN.

Not all event types are supported. EDEV_EVENT_HANGUP, consider setting up a
controlling terminal and handl®IGHUP. For DEV_EVENT_WINCH, consider using
SIGWINCH.

QNX Neutrino equivalent:
No longer supported.

In migration library?
No

You can't get all the information, but you can get bits and pieces elsewhere.

64 Appendix: A e QNX 4 Functions & QNX Neutrino Equivalents July 24, 2006

[0 2006, QNX Software Systems GmbH & Co. KG.

dev_info()

dev_insert_chars()

dev_ischars()

dev_mode()

dev_osize()

dev_read()

July 24, 2006

QNX Neutrino equivalent:
No longer supported.

In migration library?
Yes

You can't get all the information, but you can get bits and pieces elsewhere.

QNX Neutrino equivalent:
tcinject()

In migration library?
Yes

QNX Neutrino equivalent:
tcischars()

In migration library?
Yes

QNX Neutrino equivalent:
tcgetattr() andtcsetattr()

In migration library?
Yes

QNX Neutrino equivalent:
No longer supported.

In migration library?
No

QNX Neutrino equivalent:
readcond() andionatify()

In migration library?
Yes

Appendix: A e« QNX 4 Functions & QNX Neutrino Equivalents

65

[0 2006, QNX Software Systems GmbH & Co. KG.

dev_readex()

dev_size()

dev_state()

You can implement some of this by usingadcond() andionotify(). Thereadcond()
can handle the cases whe@mreoxy == 0. Theionotify() in conjunction with pulses
(signals are even easier) can handle the cases whexy ! = 0 andmin, time, and
timeout are allo.

For equivalent functionality tanin, time, andtimeout combined with a pulse or signal
for notification, create a separate thread that requests pulse notification using
ionatify(). Set up another pulse notification for the timeout. Then go into a
MsgReceive() loop with with aTimer Timeout() call before theMsgReceive() call for

the interbyte time. Deliver a pulse or set a signal whemtlre time or timeout
condition is satisfied.

The cover function doesn’t handle the proxy and armed parameters.

QNX Neutrino equivalent:
devctl () with DCMD_CHR_.GETOBAND

In migration library?
Yes

You can uselevctl() with DCMD_CHR_GETOBAND in place of this for getting
out-of-band data from resource managers that support it. Currentlydenby *
resource managers support this.

QNX Neutrino equivalent:
tcgetsize() andtcsetsize()

In migration library?
Yes

QNX Neutrino equivalent:
N/A

In migration library?
Yes

There’s no equivalent way of directly setting these states:
e For DEV_EVENT.INPUT, usedevctl() with DCMD_CHR.ISCHARS

e For DEV_EVENT._DRAIN, usedevctl() with DCMD_CHR OSCHARS

66 Appendix: A e QNX 4 Functions & QNX Neutrino Equivalents July 24, 2006

[0 2006, QNX Software Systems GmbH & Co. KG.

_disable()

disk_get_entry()

disk_space()

ecvt()

July 24, 2006

e For _DEV_EVENT_OUTPUT, there’s currently no way to determine this (because
there’s no way to determine the size of the output buffer).

e For _DEV_EVENT_EXRDY, usedevctl() with DCMD_CHR_GETOBAND — note that
doing so will clear the out-of-band data in the casd®ic- * drivers.

QNX Neutrino equivalent:
InterruptLock()

In migration library?
No

QNX Neutrino equivalent:
devctl () with the DCVD_CAMLDEVI NFO command.

In migration library?
Yes, but see below.

See<sys/ dcnd_cam h> and<sys/ cam.devi ce. h>. Although a cover function is
provided in the migration library, you might want to use the didmsttl()s that build
this — they’re more useful and have better field definitions (e.g. “cylinders” in QNX
Neutrino is 32-bit, but only 16-bit in QNX 4, and large EIDE disks have already
wrapped this due to geometry translation).

QNX Neutrino equivalent:
statvfs()

In migration library?
Yes, but see below.

Although a cover function is provided in the migration library, you might want to
switch directly tostatvfs() because it has additional fields that may be useful (block
size, mount flags, etc.).

QNX Neutrino equivalent:
sprintf()

In migration library?
No

Appendix: A ¢ QNX 4 Functions & QNX Neutrino Equivalents 67

[0 2006, QNX Software Systems GmbH & Co. KG.

_ecvt()
QNX Neutrino equivalent:
sprintf()
In migration library?
No

_enable()
QNX Neutrino equivalent:
InterruptUnlock()

In migration library?
No

_endthread()
QNX Neutrino equivalent:

pthread_exit()

In migration library?
No

_expand()
QNX Neutrino equivalent:
realloc()

In migration library?
No

N You can useealloc() in place of this, but beware thegalloc() will move your
memory block to a new address if needed, aaxpand() will fail rather than move
your memory block to a new address.

_fcalloc()
QNX Neutrino equivalent:
calloc()

In migration library?
No

68 Appendix: A e« QNX 4 Functions & QNX Neutrino Equivalents July 24, 2006

[0 2006, QNX Software Systems GmbH & Co. KG.

fevt()
QNX Neutrino equivalent:
sprintf()
In migration library?
No

_fevt()
QNX Neutrino equivalent:
sprintf()
In migration library?
No

_fexpand()
QNX Neutrino equivalent:
realloc()

In migration library?
No

You can useealloc() in place of this, but beware thegalloc() will move your
memory block to a new address if needed, aaxpand() will fail rather than move
your memory block to a new address.

_ffree()
QNX Neutrino equivalent:

free()

In migration library?
No

_fheapchk()

QNX Neutrino equivalent:
mallopt() with MALLOC VERIFY

In migration library?
No

See themal | oc _g library described in the “Heap Analysis” chapterRrogrammer’s
Guide.

July 24, 2006 Appendix: A « QNX 4 Functions & QNX Neutrino Equivalents 69

[0 2006, QNX Software Systems GmbH & Co. KG.

_fheapgrow()
QNX Neutrino equivalent:
No longer supported.

In migration library?
No

_fheapmin()
QNX Neutrino equivalent:
No longer supported.

In migration library?
No

_fheapset()
QNX Neutrino equivalent:
mallopt() with MALLOC VERIFY

In migration library?
No

See themal | oc _g library described in the “Heap Analysis” chapterRrogrammer’s
Guide.

_fheapshrink()
QNX Neutrino equivalent:

No longer supported.

In migration library?
No

_fheapwalk()
QNX Neutrino equivalent:
No longer supported.

In migration library?
No

See themal | oc _g library described in the “Heap Analysis” chapterRrogrammer’s
Guide.

70 Appendix: A e QNX 4 Functions & QNX Neutrino Equivalents July 24, 2006

[0 2006, QNX Software Systems GmbH & Co. KG.

filelength()

_fmalloc()

_fmemccpy()

_fmemchr()

_fmemcmp()

July 24, 2006

QNX Neutrino equivalent:
fstat()

In migration library?
No

You can do this with:

fstat(fd, &st);

followed by:

return(S_l SBLK(st. st _nmode) ? st.st_nbl ocks *
st. st _bl ocksi ze :

A little more may be needed for 64-bit support.

QNX Neutrino equivalent:
malloc()

In migration library?
No

QNX Neutrino equivalent:
memccpy()

In migration library?
No

QNX Neutrino equivalent:
memchr ()

In migration library?
No

QNX Neutrino equivalent:
memcmp()

In migration library?
No

Appendix: A e« QNX 4 Functions & QNX Neutrino Equivalents

st. st _si ze);

71

[0 2006, QNX Software Systems GmbH & Co. KG.

fmemcpy()

_fmemicmp()

_fmemmove()

_fmemset()

_fmsize()

FP_OFF()

72 Appendix: A « QNX 4 Functions & QNX Neutrino Equivalents

QNX Neutrino equivalent:
memcpy()

In migration library?
No

QNX Neutrino equivalent:
memicmp()

In migration library?
No

QNX Neutrino equivalent:
memmove()

In migration library?
No

QNX Neutrino equivalent:
memset()

In migration library?
No

QNX Neutrino equivalent:

_msize(), _-musize(), andDH_ULEN()

In migration library?
No

See theral | oc _g library described in the “Heap Analysis” chapterRrogrammer’s

Guide.

QNX Neutrino equivalent:

No longer supported.

In migration library?
No

July 24, 2006

0 2006, QNX Software Systems GmbH & Co. KG.

fpreset()

_frealloc()

_freect()

FP_SEG()

_fsopen()

_fstr* functions

July 24, 2006

QNX Neutrino equivalent:

No longer supported.

In migration library?
No

QNX Neutrino equivalent:
realloc()

In migration library?
No

QNX Neutrino equivalent:

No longer supported.

In migration library?
No

QNX Neutrino equivalent:

No longer supported.

In migration library?
No

QNX Neutrino equivalent:
sopen(), fdopen()

In migration library?
No

Usesopen(), which returns a file descriptor, then uslepen() to associate a stream

with it.

The following functions aren’t in the migration library:

Appendix: A e« QNX 4 Functions & QNX Neutrino Equivalents

73

[0 2006, QNX Software Systems GmbH & Co. KG.

fsys _fdinfo()

fsys fstat()

ONX 4 function:

QNX Neutrino equivalent:

_fstrcat()
_fstrchr()
_fstremp()
_fstrepy()
_fstrespn()
_fstrdup()
_fstricmp()
_fstrlen()
_fstriwr()
_fstrncat()
_fstrncmp()
_fstrncpy()
_fstrnicmp()
_fstrnset()
_fstrpbrk()
_fstrrchr()
fstrrev()
_fstrset()
_fstrspn()
fstrstr()
_fstrtok()
_fstrupr()

strecat()
strchr()
stremp()

strepy()
strcspn()
strdup()
stremp()
strlen()
striwr()
strncat()
strncmp()
strncpy()
strnicmp()
strnset()
strpbrk()
strrchr()
strrev()
strset()
strspn()
strstr()
strtok()
strupr()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

QNX Neutrino equivalent:

No longer supported.

74 Appendix: A @« QNX 4 Functions & QNX Neutrino Equivalents

July 24, 2006

[0 2006, QNX Software Systems GmbH & Co. KG.

In migration library?
No

The filesystem doesn't provide the information because the QNX Neltonbl k
doesn't give preferential treatment to any particular disk format.

fsys_get_mount_dev()

fsys_get_mount_pt()

fsys_stat()

gevt()

July 24, 2006

QNX Neutrino equivalent:
devctl()

In migration library?
Yes

You can use théevctl() commandCMD_FSYSMOUNTED_ON to get this
information, but it must be sent as part of a combine message. See the source for
fsys_get_mount_dev() in the migration library for code for doing this.

QNX Neutrino equivalent:
devctl()

In migration library?
Yes

You can use thdevctl() commanddCMD_FSYSMOUNTED_BY to get this
information, but it must be sent as part of a combine message. See the source for
fsys_get_mount_pt() in the migration library for code for doing this.

QNX Neutrino equivalent:
No longer supported.

In migration library?
No

The filesystem doesn't provide the information because the QNX Neltonbl k
doesn't give preferential treatment to any particular disk format.

QNX Neutrino equivalent:
Considersprintf()

In migration library?
No

Appendix: A « QNX 4 Functions & QNX Neutrino Equivalents 75

[0 2006, QNX Software Systems GmbH & Co. KG.

_gevt()

getch()

getche()

getcmd()

getnid()

QNX Neutrino equivalent:
Considersprintf()

In migration library?
No

QNX Neutrino equivalent:
read() in raw mode.

In migration library?
No

QNX Neutrino equivalent:

getchar() or getc() combined withputchar () or putc().

In migration library?
No

QNX Neutrino equivalent:
Parse the argument vector passethén() instead.

In migration library?
No

QNX Neutrino equivalent:
netmgr _ndtostr ()

In migration library?
Yes

Unlike QNX 4, QNX Neutrino doesn't use node ID#ds). Instead, nodes on a
network havenames. To get the name of the caller’s node, umemgr _ndtostr() with

the nd parameter set ¢D_LOCAL NODE.

The migration library has getnid() function that returns whatever was passed to

m g4nt o- procnyr via the- n option.

76 Appendix: A « QNX 4 Functions & QNX Neutrino Equivalents

July 24, 2006

[0 2006, QNX Software Systems GmbH & Co. KG.

gettimer()
QNX Neutrino equivalent:
timer _gettime()
In migration library?
No

getwd()
QNX Neutrino equivalent:
getcwd()

In migration library?
No

Thegetwd() function requires a preallocated buffer, whergetswd() will allocate one
if it's passed NULL for the buffer. Thgetcwd() function also has a size parameter.
For portability, usegetcwd() instead ofgetwd().

_gmtime()
QNX Neutrino equivalent:
gmtime_r()

In migration library?
No

halloc()
QNX Neutrino equivalent:
calloc()

In migration library?
No

_heapchk()

QNX Neutrino equivalent:
mallopt() with MALLOC VERIFY

In migration library?
No

See themal | oc _g library described in the “Heap Analysis” chapterRrogrammer’s
Guide.

July 24, 2006 Appendix: A ¢ QNX 4 Functions & QNX Neutrino Equivalents 77

[0 2006, QNX Software Systems GmbH & Co. KG.

_heapenable()
QNX Neutrino equivalent:
No longer supported.

In migration library?
No

_heapgrow()
QNX Neutrino equivalent:
No longer supported.

In migration library?
No

_heapmin()
QNX Neutrino equivalent:
No longer supported.
In migration library?
No

_heapset()
QNX Neutrino equivalent:
mallopt() with MALLOC VERIFY

In migration library?
No

See themal | oc _g library described in the “Heap Analysis” chapterRrogrammer’s
Guide.
_heapshrink()
QNX Neutrino equivalent:
No longer supported.

In migration library?
No

_heapwalk()
QNX Neutrino equivalent:
No longer supported.

In migration library?
No

78 Appendix: A e QNX 4 Functions & QNX Neutrino Equivalents July 24, 2006

[0 2006, QNX Software Systems GmbH & Co. KG.

hfree()

ioctl()

inp()

inpd()

inpw()

July 24, 2006

See themal | oc _g library described in the “Heap Analysis” chapterRrogrammer’s
Guide.

QNX Neutrino equivalent:
free()

In migration library?
No

QNX Neutrino equivalent:
devctl()

In migration library?
No

For thedcmds to use with QSS-supplied resource managersssgs/ dend _*. h>.

QNX Neutrino equivalent:
in8()

In migration library?
No

You should callimmap_device_io() before calling the port I/O functions.

QNX Neutrino equivalent:
in32()

In migration library?
No

You should calimmap_device_io() before calling the port I/O functions.

QNX Neutrino equivalent:
in16()

Appendix: A ¢ QNX 4 Functions & QNX Neutrino Equivalents 79

[0 2006, QNX Software Systems GmbH & Co. KG.

In migration library?
No

O You should calimmap_device_io() before calling the port I/O functions.

_isascii()
QNX Neutrino equivalent:
isascii()
In migration library?
No

_iscsym()
QNX Neutrino equivalent:
isalpha(), isdigit()
In migration library?
No

Replace with an expression usirgglpha(), isdigit() and testing for the underscore
character.

_iscsymf()
QNX Neutrino equivalent:
isalpha()
In migration library?
No

Replace with an expression usirsglpha() and testing for the underscore character.

_itoa()
QNX Neutrino equivalent:
itoa()

In migration library?
No

kbhit()
QNX Neutrino equivalent:
tcischars()

In migration library?
No

80 Appendix: A e« QNX 4 Functions & QNX Neutrino Equivalents July 24, 2006

[0 2006, QNX Software Systems GmbH & Co. KG.

Ifind()
QNX Neutrino equivalent:
No longer supported.

In migration library?
No

_localtime()
QNX Neutrino equivalent:
localtime_r()

In migration library?
No

lock()
QNX Neutrino equivalent:

fentl () with F_.SETLK

In migration library?
No

locking()
QNX Neutrino equivalent:
tell() andfcntl() with F.SETLK

In migration library?
No

_locking()
QNX Neutrino equivalent:
tell() andfcntl() with F.SETLK

In migration library?
No

log2()
QNX Neutrino equivalent:
No longer supported.

In migration library?
No

July 24, 2006 Appendix: A e QNX 4 Functions & QNX Neutrino Equivalents

81

[0 2006, QNX Software Systems GmbH & Co. KG.

_rotl()

_rotr()

Isearch()

_Itoa()

_makepath()

__max()

QNX Neutrino equivalent:
No longer supported.

In migration library?
No

QNX Neutrino equivalent:
No longer supported.

In migration library?
No

QNX Neutrino equivalent:
No longer supported.

In migration library?
No

QNX Neutrino equivalent:
Itoa()

In migration library?
No

QNX Neutrino equivalent:
No longer supported.

In migration library?
No

QNX Neutrino equivalent:
No longer supported.

In migration library?
No

82 Appendix: A « QNX 4 Functions & QNX Neutrino Equivalents

July 24, 2006

[0 2006, QNX Software Systems GmbH & Co. KG.

_memavl()

_memicmp()

_memmax()

__min()

MK_FP()

mktimer()

July 24, 2006

QNX Neutrino equivalent:

No longer supported.

In migration library?
No

QNX Neutrino equivalent:
memicmp()

In migration library?
No

QNX Neutrino equivalent:

No longer supported.

In migration library?
No

QNX Neutrino equivalent:

No longer supported.

In migration library?
No

QNX Neutrino equivalent:

No longer supported.

In migration library?
No

QNX Neutrino equivalent:
timer _create()

In migration library?
No

Appendix: A e« QNX 4 Functions & QNX Neutrino Equivalents

83

[0 2006, QNX Software Systems GmbH & Co. KG.

mount()

mouse_close()

mouse_flush()

mouse_open()

mouse_param()

mouse_read()

84 Appendix: A « QNX 4 Functions & QNX Neutrino Equivalents

QNX Neutrino equivalent:
mount()

In migration library?
No

This is supported, but its prototype has changed.

QNX Neutrino equivalent:

No longer supported.

In migration library?
No

QNX Neutrino equivalent:

No longer supported.

In migration library?
No

QNX Neutrino equivalent:

No longer supported.

In migration library?
No

QNX Neutrino equivalent:

No longer supported.

In migration library?
No

QNX Neutrino equivalent:

No longer supported.

In migration library?
No

July 24, 2006

[0 2006, QNX Software Systems GmbH & Co. KG.

movedata()

_msize()

_ncalloc()

_nexpand()

_nfree()

July 24, 2006

QNX Neutrino equivalent:
memcpy()

In migration library?
No

QNX Neutrino equivalent:
_msize(), _-musize(), andDH_ULEN()

In migration library?
No

See themal | oc _g library described in the “Heap Analysis” chapterRrogrammer’s

Guide.

QNX Neutrino equivalent:
calloc()

In migration library?
No

QNX Neutrino equivalent:
realloc()

In migration library?
No

You can useealloc() in place of this, but beware thegalloc() will move your

memory block to a new address if needed, ametpand() will fail rather than move

your memory block to a new address.

QNX Neutrino equivalent:
free()

In migration library?
No

Appendix: A e« QNX 4 Functions & QNX Neutrino Equivalents

85

[0 2006, QNX Software Systems GmbH & Co. KG.

_nheapchk()
QNX Neutrino equivalent:
mallopt() with MALLOC _VERIFY

In migration library?
No

See theral | oc _g library described in the “Heap Analysis” chapterRrogrammer’s
Guide.

_nheapgrow()
QNX Neutrino equivalent:
No longer supported.

In migration library?
No

_nheapmin()
QNX Neutrino equivalent:
No longer supported.

In migration library?
No

_nheapset()
QNX Neutrino equivalent:
mallopt() with MALLOC _VERIFY

In migration library?
No

See theral | oc _g library described in the “Heap Analysis” chapterRrogrammer’s
Guide.

_nheapshrink()
QNX Neutrino equivalent:
No longer supported.

In migration library?
No

86 Appendix: A e QNX 4 Functions & QNX Neutrino Equivalents July 24, 2006

[0 2006, QNX Software Systems GmbH & Co. KG.

_nheapwalk()
QNX Neutrino equivalent:
No longer supported.

In migration library?
No

See themal | oc _g library described in the “Heap Analysis” chapterRrogrammer’s
Guide.

_nmalloc()
QNX Neutrino equivalent:
malloc()

In migration library?
No

_nmsize()
QNX Neutrino equivalent:
_msize(), -musize(), andDH_ULEN()

In migration library?
No

See theral | oc _g library described in the “Heap Analysis” chapterRrogrammer’s
Guide.

nosound()
QNX Neutrino equivalent:
No longer supported.

In migration library?
No

_nrealloc()

QNX Neutrino equivalent:
realloc()

In migration library?
No

July 24, 2006 Appendix: A « QNX 4 Functions & QNX Neutrino Equivalents 87

[0 2006, QNX Software Systems GmbH & Co. KG.

onexit()
QNX Neutrino equivalent:
atexit()

In migration library?
No

outp()
QNX Neutrino equivalent:
out8()
In migration library?
No

N You should calimmap_device_io() before calling the port I/O functions.

outpd()
QNX Neutrino equivalent:
out32()

In migration library?
No

You should callimmap_device_io() before calling the port I/O functions.

outpw()
QNX Neutrino equivalent:
out16()

In migration library?
No

You should callimmap_device_io() before calling the port I/O functions.

print_usage()
QNX Neutrino equivalent:
No longer supported.

In migration library?
No

88 Appendix: A e« QNX 4 Functions & QNX Neutrino Equivalents July 24, 2006

[0 2006, QNX Software Systems GmbH & Co. KG.

putch()
QNX Neutrino equivalent:
Set/ dev/ t ty as standard output and caplltchar().

In migration library?
No

Alternate method: simply operdev/ t t y and useutc().

gnx_adj_time()
QNX Neutrino equivalent:
ClockAdjust()

In migration library?
No

gnx_device_attach()
QNX Neutrino equivalent:
rsrcdbmgr _devno_attach()

In migration library?
No

gnx_device detach()
QNX Neutrino equivalent:
rsrcdbmgr _devno_detach()

In migration library?
No

gnx_display_hex()
QNX Neutrino equivalent:
No longer supported.

In migration library?
No

gnx_display_msg()
QNX Neutrino equivalent:
No longer supported.

In migration library?
No

July 24, 2006 Appendix: A e QNX 4 Functions & QNX Neutrino Equivalents

89

[0 2006, QNX Software Systems GmbH & Co. KG.

gnx_fd_attach()
QNX Neutrino equivalent:
No longer supported.

In migration library?
No

The resource manager library removes the need for this.

gnx_fd_detach()
QNX Neutrino equivalent:
No longer supported.

In migration library?
No

The resource manager library removes the need for this.

gnx_fd_query()
QNX Neutrino equivalent:
None currently

In migration library?
No

There may be something later.

gnx_fullpath()
QNX Neutrino equivalent:
real path()

In migration library?
No

Userealpath() followed by a call tonetmgr _ndtostr() to get the node name.

gnx_getclock()
QNX Neutrino equivalent:
None currently for remote nodes.

In migration library?
No

Currently, there’s no way of getting the time from another node in a native QNX
network. Useclock_gettime() to get the time on the local node.

90 Appendix: A e QNX 4 Functions & QNX Neutrino Equivalents July 24, 2006

[0 2006, QNX Software Systems GmbH & Co. KG.

gnx_getids()
QNX Neutrino equivalent:
No longer supported.

In migration library?
No

See the section on “Getting process information” in the Programming Issues chapter in
this guide.
gnx_hint_attach()
QNX Neutrino equivalent:
InterruptAttach() or InterruptAttachEvent()

In migration library?
No

gnx_hint_detach()
QNX Neutrino equivalent:
InterruptDetach()

In migration library?
No

gnx_hint_mask()
QNX Neutrino equivalent:
InterruptMask() andlnterruptUnmask()

In migration library?
No

gnx_hint_query()
QNX Neutrino equivalent:
No longer supported.

In migration library?
No

gnx_ioctl()
QNX Neutrino equivalent:
devctl()

In migration library?
No

July 24, 2006 Appendix: A « QNX 4 Functions & QNX Neutrino Equivalents 91

[0 2006, QNX Software Systems GmbH & Co. KG.

gnx_ioctimx()

gnhx_name_attach()

gnx_name_detach()

gnhx_name_locate()

For thedcmds to use with QSS-supplied resource managersssgs/ dend _*. h>.

QNX Neutrino equivalent:
devctl()

In migration library?
No

For thedcmds to use with QSS-supplied resource managersssgs/ dend _*. h>.

QNX Neutrino equivalent:
name_attach() or write a resource manager

In migration library?
Yes

If you're not using the migration library and you're using QNX Neutrino, then use
name_attach() or write resource managers.

For some other methods that the sender can use to find the receiver, see the section on
“How does the sender find the receiver?” in the Programming Issues chapter in this
guide.

QNX Neutrino equivalent:
name_detach() or write a resource manager

In migration library?
Yes

If you're not using the migration library and you're replacigqux_name_attach() with
name_attach(), then usename_detach().

QNX Neutrino equivalent:
name_open() or write a resource manager

In migration library?
Yes

If you're not using the migration library and you're using QNX Neutrino, then use
name_attach() or write resource managers.

92 Appendix: A e« QNX 4 Functions & QNX Neutrino Equivalents July 24, 2006

[0 2006, QNX Software Systems GmbH & Co. KG.

For some other methods that the sender can use to find the receiver, see the section on
“How does the sender find the receiver?” in the Programming Issues chapter in this
guide.

gnx_name_locators()
QNX Neutrino equivalent:
No longer supported.
In migration library?
No

gnx_name_nodes()
QNX Neutrino equivalent:
No longer supported.

In migration library?
No

gnx_name_query()
QNX Neutrino equivalent:

Names registered visame_attach() (QNX Neutrino) appear in
/ dev/ nanme/ | ocal and/ dev/ nare/ gl obal .

In migration library?
Yes

The migration library has gnx_name_query() function for querying the names
registered using thenx_name_attach() migration library function.

gnx_net_alive()
QNX Neutrino equivalent:
netmgr _ndtostr() with ND_LOCAL _NODE, readdir()
In migration library?
No

Find out the name of your network directory by callimgmgr ndtostr() with
ND_LOCAL_NODE for thend parameter. Then walk through the network directory
usingreaddir(). The nodes listed are those that are up.

gnx_nidtostr()

QNX Neutrino equivalent:
netmgr _ndtostr()

In migration library?
No

July 24, 2006 Appendix: A « QNX 4 Functions & QNX Neutrino Equivalents 93

[0 2006, QNX Software Systems GmbH & Co. KG.

gnx_osinfo()
QNX Neutrino equivalent:
No longer supported.

In migration library?
Yes

See the section on “Getting system information” in the Programming Issues chapter in
this guide.
gnx_osstat()
QNX Neutrino equivalent:
sysconf()

In migration library?
No

QNX Neutrino doesn’t have as many hard limits as QNX 4, but instead keeps
allocating memory until it runs out. Some limits can be found out by cabysgonf().
gnx_pflags()
QNX Neutrino equivalent:
No longer supported.

In migration library?
No

See the section on “Process flags” in the Programming Issues chapter in this guide.

gnx_prefix_attach()
QNX Neutrino equivalent:
name_attach() or pathmgr_symlink()

In migration library?
No

If you were using this function just to put a name in the prefix table so that other
processes could find yours, then umsene_attach() instead (QNX Neutrino).

If you were using this function in an I/O manager that handleG_* messages, then
you need to convert to the resource manager library.

If you were using this function to create an alias, thenpabmgr symlink() instead.

94 Appendix: A e QNX 4 Functions & QNX Neutrino Equivalents July 24, 2006

[0 2006, QNX Software Systems GmbH & Co. KG.

gnx_prefix_detach()

gnx_prefix_getroot()

gnx_prefix_query()

gnx_prefix_setroot()

July 24, 2006

QNX Neutrino equivalent:
name_detach() or resmgr _detach() or pathmgr _unlink() or unlink()

In migration library?
No

If you're usingname_attach() to register a name (QNX Neutrino), then use
name_detach() to detach it.

If you're writing a resource manager and had attached the namesmgr _attach(),
then useesmgr_detach() to detach it.

If you wanted to remove a symlink created uspaghmgr _symlink(), then use
pathmgr _unlink() or unlink() instead.

QNX Neutrino equivalent:
No longer supported.

In migration library?
No

QNX Neutrino doesn’t have the concept of a network root.

QNX Neutrino equivalent:
No longer supported.

In migration library?
No

For the names that are associated with a resource manager, you can walk through the
directory structure undérpr oc/ nount . The numbers shown refer to a resource
manager and anad,pid,chid,handletype where thetlype is one of the FTYPE*

macros irksys/ f t ype. h>. Names that are the equivalent of replacements (or
aliases) aren't visible in QNX Neutrino.

QNX Neutrino equivalent:
No longer supported.

In migration library?
No

QNX Neutrino doesn’t have the concept of a network root.

Appendix: A ¢ QNX 4 Functions & QNX Neutrino Equivalents 95

[0 2006, QNX Software Systems GmbH & Co. KG.

gnx_proxy attach()
QNX Neutrino equivalent:
Replace proxies with pulses

In migration library?
Yes

If you're not using the migration library, then consider replacing proxies with pulses.

gnx_proxy _detach()
QNX Neutrino equivalent:
No longer supported.

In migration library?
Yes

If you're not using the migration library and you're replacigux_proxy attach() with
pulses, then you may need to detach the connection for delivering the pulse.

gnx_proxy_rem _attach()
QNX Neutrino equivalent:
Replace proxies with pulses

In migration library?
No

If you're not using the migration library, then consider replacing proxies with pulses.

gnx_proxy_rem_detach()
QNX Neutrino equivalent:
Replace proxies with pulses

In migration library?
No

If you're not using the migration library and you're replaciqux_proxy rem_attach()
with pulses, then you may need to detach the connection for delivering the pulse.

gnx_psinfo()
QNX Neutrino equivalent:
No longer supported.

In migration library?
Yes

96 Appendix: A « QNX 4 Functions & QNX Neutrino Equivalents July 24, 2006

[0 2006, QNX Software Systems GmbH & Co. KG.

See the section on “Getting system information” in the Programming Issues chapter in
this guide.
gnx_scheduler()
QNX Neutrino equivalent:
sched_setscheduler () for the local case.

In migration library?
No

Currently, there’s no way to do this across the network.

gnx_segment_alloc()
QNX Neutrino equivalent:
No longer supported.

In migration library?
No

Seeshm_open(), ftruncate(), andmmap().

gnx_segment_alloc_flags()
QNX Neutrino equivalent:
No longer supported.

In migration library?
No

Seeshm_open(), ftruncate(), andmmap().

gnx_segment_arm()
QNX Neutrino equivalent:
No longer supported.

In migration library?
No

gnx_segment flags()
QNX Neutrino equivalent:
No longer supported.

In migration library?
No

Seemmap().

July 24, 2006 Appendix: A « QNX 4 Functions & QNX Neutrino Equivalents 97

[0 2006, QNX Software Systems GmbH & Co. KG.

gnx_segment free()

gnx_segment_get()

gnx_segment_huge()

gnx_segment_index()

gnx_segment_info()

98

QNX Neutrino equivalent:
No longer supported.

In migration library?
No

Seemunmap() andshm_unlink().

QNX Neutrino equivalent:
No longer supported.

In migration library?
No

QNX Neutrino equivalent:
No longer supported.

In migration library?
No

QNX Neutrino equivalent:
No longer supported.

In migration library?
No

QNX Neutrino equivalent:
No longer supported.

In migration library?
No

To get a physical address, yzasix_mem_offset().

Appendix: A « QNX 4 Functions & QNX Neutrino Equivalents

July 24, 2006

[0 2006, QNX Software Systems GmbH & Co. KG.

gnhx_segment_overlay()
QNX Neutrino equivalent:
No longer supported.

In migration library?
No

Seemmap_device_memory() or mmap().

gnx_segment_overlay flags()
QNX Neutrino equivalent:
No longer supported.

In migration library?
No

Seemmap_device_memory() or mmap().

gnx_segment_put()
QNX Neutrino equivalent:
No longer supported.

In migration library?
No

gnx_segment_raw_alloc()
QNX Neutrino equivalent:
shm.ctl()

In migration library?
No

Create a shared memory object and sisa ctl() to both set its size and to create it as
contiguous. If the process dies, then as long as you dorshiehounlink() the memory
will still be set aside. To get a physical address, pasx_mem_offset().

gnx_segment_raw free()
QNX Neutrino equivalent:
shm_unlink()

In migration library?
No

July 24, 2006 Appendix: A « QNX 4 Functions & QNX Neutrino Equivalents 99

[0 2006, QNX Software Systems GmbH & Co. KG.

To return memory allocated as detailed above udersegment _raw _alloc(), close()
the file descriptommunmap() the memory, and cathm_unlink().

There’s no equivalent function for adding memory that wasn't reported by the BIOS.
However, this sort of thing can be done using tihoption tost ar t up- * (Utilities
reference) or from the startup code usaulgl_mem() (seeBuilding Embedded Systems

in the Embedding SDK package).

gnx_segment_realloc()

QNX Neutrino equivalent:
N/A

In migration library?
No

You can grow shared memory at any time. You can shrink it only to O bytes and only
when no other process has it mapped. Shrinking it to other sizes may be implemented
in a future release.

gnx_setclock()
QNX Neutrino equivalent:
clock_settime() for the local case.

In migration library?
No

Currently, there’s no way to do this across the network.

gnx_setids()
QNX Neutrino equivalent:

No longer supported.

In migration library?
No

gnx_sflags()
QNX Neutrino equivalent:
No longer supported.

In migration library?
No

To obtain the equivalent of most of these flags, see the sourcgexarsinfo() in the
migration library.

100 Appendix: A e QNX 4 Functions & QNX Neutrino Equivalents July 24, 2006

[0 2006, QNX Software Systems GmbH & Co. KG.

gnx_sid_query()
QNX Neutrino equivalent:
No longer supported.

In migration library?
No

gnx_spawn()
QNX Neutrino equivalent:
spawn() andspawn* family.

In migration library?
Yes

See the section on “Process issues” in the Programming Issues chapter in this guide.

gnx_strtonid()
QNX Neutrino equivalent:
netmgr _ndtostr()

In migration library?
No

gnx_sync()
QNX Neutrino equivalent:
sync(), possibly withfdatasync() or fsync().
In migration library?
No

These functions don’t synchronize a filesystem on another node of the network.

gnx_ticksize()

QNX Neutrino equivalent:
ClockPeriod()

In migration library?
No

This behaves likgnx_ticksize() with the TICKSIZE_CLOSESTflag.

July 24, 2006 Appendix: A « QNX 4 Functions & QNX Neutrino Equivalents 101

[0 2006, QNX Software Systems GmbH & Co. KG.

gnx_trace close()

gnx_trace_info()

gnx_trace_open()

gnx_trace read()

gnx_trace_severity()

QNX Neutrino equivalent:
No longer supported.

In migration library?
No

Consider usingyslog() for logging instead.

QNX Neutrino equivalent:
No longer supported.

In migration library?
No

Consider usingyslog() for logging instead.

QNX Neutrino equivalent:
No longer supported.

In migration library?
No

Consider usingyslog() for logging instead.

QNX Neutrino equivalent:
No longer supported.

In migration library?
No

Consider usingyslog() for logging instead.

QNX Neutrino equivalent:
No longer supported.

In migration library?
No

Consider usingyslog() for logging instead.

102 Appendix: A « QNX 4 Functions & QNX Neutrino Equivalents

July 24, 2006

[0 2006, QNX Software Systems GmbH & Co. KG.

gnx_trace _trigger()
QNX Neutrino equivalent:
No longer supported.

In migration library?
No

Consider usingyslog() for logging instead.

gnx_umask()
QNX Neutrino equivalent:
N/A

In migration library?
No

There’s no way to set theérask of another process, but you can wsaask() to set the
umask for the caller.

gnx_vc_attach()
QNX Neutrino equivalent:
ConnectAttach()

In migration library?
No

gnx_vc_detach()
QNX Neutrino equivalent:
ConnectDetach()

In migration library?
No

gnx_vc_name attach()
QNX Neutrino equivalent:
open() or name_open()

In migration library?
No

This is the equivalent of doingpen() (or name_open()) of a name that is registered by
a process on another node véamgr _attach() (or name_attach()).

July 24, 2006 Appendix: A « QNX 4 Functions & QNX Neutrino Equivalents 103

[0 2006, QNX Software Systems GmbH & Co. KG.

gnx_vc_poll_parm()

Readmsg()

D
Readmsgmx()

D
Receive()

D

QNX Neutrino equivalent:
No longer supported.

In migration library?
No

See the various docs on QNX Neutrino native networking for similar options.

QNX Neutrino equivalent:
MsgRead()

In migration library?
Yes

Call this function with the receive ID returned frovfisgReceive() instead of a process
ID.

QNX Neutrino equivalent:
MsgReadv()

In migration library?
Yes

Call this function with the receive ID returned frovfisgReceive() instead of a process
ID.

QNX Neutrino equivalent:
MsgReceive()

In migration library?
Yes

Call this function with a channel ID returned fro@hannel Create() instead of a
process ID.

For more information, see the section on “Channel IDs vs process IDs” in the
Programming Issues chapter in this guide.

104 Appendix: A e QNX 4 Functions & QNX Neutrino Equivalents July 24, 2006

[0 2006, QNX Software Systems GmbH & Co. KG.

Receivemx()

Relay()

reltimer()

Reply()

Replymx()

July 24, 2006

QNX Neutrino equivalent:
MsgReceivev()

In migration library?
Yes

Call this function with a channel ID returned fro@hannel Create() instead of a
process ID.

For more information, see the section on “Channel IDs vs process IDs” in the
Programming Issues chapter in this guide.

QNX Neutrino equivalent:
No longer supported.

In migration library?
No

QNX Neutrino equivalent:
timer_settinme(CLOCK_REALTIME, 0, ...)

In migration library?
No

QNX Neutrino equivalent:
MsgReply()

In migration library?
Yes

Call this function with the receive ID returned frovtisgReceive() instead of a process
ID.

QNX Neutrino equivalent:
MsgReplyv()

Appendix: A e QNX 4 Functions & QNX Neutrino Equivalents 105

[0 2006, QNX Software Systems GmbH & Co. KG.

In migration library?
Yes

O Call this function with the receive ID returned frovtisgReceive() instead of a process
ID.

rmtimer()
QNX Neutrino equivalent:
timer _delete()

In migration library?
No

_rotl()
QNX Neutrino equivalent:
No longer supported.

In migration library?
No

_rotr()
QNX Neutrino equivalent:
No longer supported.

In migration library?
No

_searchenv()
QNX Neutrino equivalent:
searchenv()

In migration library?
No

O The searchenv() function doesn’t search in the current directory unless it’s specified in
the given environment variable.

106 Appendix: A e QNX 4 Functions & QNX Neutrino Equivalents July 24, 2006

[0 2006, QNX Software Systems GmbH & Co. KG.

segread()

Send()

Sendfd()

Sendfdmx()

July 24, 2006

QNX Neutrino equivalent:
No longer supported.

In migration library?
No

QNX Neutrino equivalent:
MsgSend()

In migration library?
Yes

This function takes a connection IBqjd) instead of a process ID. You can get this
coid (a file descriptor) fronopen() or Connect At t ach(. . .,
-NTO_SI DE_CHANNEL, ...).

For more information, see the section on “Channel IDs vs process IDs” in the
Programming Issues chapter in this guide.

QNX Neutrino equivalent:
MsgSend()

In migration library?
No

This function takes a file descriptor (which is also a connection ID in QNX Neutrino).

For more information, see the section on “Channel IDs vs process IDs” in the
Programming Issues chapter in this guide.

QNX Neutrino equivalent:
MsgSendw()

In migration library?
No

Appendix: A e QNX 4 Functions & QNX Neutrino Equivalents 107

[0 2006, QNX Software Systems GmbH & Co. KG.

This function takes a file descriptor (which is also a connection ID in QNX Neutrino).

For more information, see the section on “Channel IDs vs process IDs” in the
Programming Issues chapter in this guide.

Sendmx()
QNX Neutrino equivalent:
MsgSendw()

In migration library?
Yes

This function takes a connection IBqid) instead of a process ID. You can get this
coid (a file descriptor) fronopen() or Connect At t ach(. . .,
_NTO_SI DE_CHANNEL, ...).

For more information, see the section on “Channel IDs vs process IDs” in the
Programming Issues chapter in this guide.

_setmx()
QNX Neutrino equivalent:
SETIOV() for use with the QNX Neutrind/sg* () functions.
In migration library?
Yes — a_setmx() macro is provided in the migration library header file.

set_new_handler()
QNX Neutrino equivalent:
N/A
In migration library?
No

This is available in the C++ library (posted as free software for QNX Neutrino).

_set_new_handler()

QNX Neutrino equivalent:
N/A

In migration library?
No

This is available in the C++ library (posted as free software for QNX Neutrino).

108 Appendix: A e QNX 4 Functions & QNX Neutrino Equivalents July 24, 2006

[0 2006, QNX Software Systems GmbH & Co. KG.

sound()
QNX Neutrino equivalent:
No longer supported.
In migration library?
No
_splitpath()

QNX Neutrino equivalent:
No longer supported.

In migration library?
No

_splitpath2()
QNX Neutrino equivalent:

No longer supported.

In migration library?
No

stackavail()
QNX Neutrino equivalent:
__stackavail()

In migration library?

No
_status87()
QNX Neutrino equivalent:
No longer supported.
In migration library?
No
_strdate()

QNX Neutrino equivalent:
time(), localtime(), gmtime(), andstrftime()

In migration library?
No

July 24, 2006 Appendix: A e« QNX 4 Functions & QNX Neutrino Equivalents

109

[0 2006, QNX Software Systems GmbH & Co. KG.

_strdup()

_stricmp()

_striwr()

_strnicmp()

_strrev()

_strtime()

110 Appendix: A ¢ QNX 4 Functions & QNX Neutrino Equivalents

QNX Neutrino equivalent:

strdup()

In migration library?
No

QNX Neutrino equivalent:

stricmp()

In migration library?
No

QNX Neutrino equivalent:
striwr()

In migration library?
No

QNX Neutrino equivalent:
strnicmp()

In migration library?
No

QNX Neutrino equivalent:
strrev()

In migration library?
No

QNX Neutrino equivalent:

time(), localtime(), gmtime(), andstrftime()

In migration library?
No

July 24, 2006

[0 2006, QNX Software Systems GmbH & Co. KG.

_strupr()
QNX Neutrino equivalent:
strupr()
In migration library?
No
tcsetct()

QNX Neutrino equivalent:
N/A

In migration library?
No

Although there’s no equivalent function for this, the first tty that is opened without
O_NOCTTY after a call tosetsid() and that doesn't already have a controlling process
will cause the calling process to be the controlling process for this tty.

term_* functions

The following functions have no QNX Neutrino equivalent, and aren’t in the migration
library; usencur ses instead.

July 24, 2006

term_attr _type() term_key()
term_axis() term_left()
term_bar() term_lmenu()
term_box() term_load()
term_box_fill() term_menu()

term_box_off()
term_box_on()

term_mouse_default()
term_mouse_flags()

term_clear() term_mouse_handler ()
term_color() term_mouse_hide()
term_cur() term_mouse_move()

term_delete_char()
term_delete_ling()

term_mouse_off()
term_mouse_on()

term_down() term_mouse_process()
term_field() term_printf()
termfill() term_receive()
term_flush() term_relearn_size()
term_get_ling() term_resi ze_off()
term_home() term_resize_on()
termLinit() term_restore()
term.insert_char() term_restore_image()
termLinsert_ling() term.right()

termLinsert_off()
term.insert_on()

term_save_image()
term_scroll _down()

Appendix: A « QNX 4 Functions & QNX Neutrino Equivalents

111

[0 2006, QNX Software Systems GmbH & Co. KG.

tfork()

timer _create()

_tolower()

_toupper()

Trace0()

term_scroll _up() term_up()
term_setup() term_video_off()
term_type() term.video_on()
term_unkey() term_window_scan()

QNX Neutrino equivalent:
N/A

In migration library?
No

QNX Neutrino has true POSIX threads. Seepttegead_* () functions (specifically,
pthread_create()) as a starting point.

QNX Neutrino equivalent:
timer _create()

In migration library?
No

The QNX 4 version was based on a draft standard. In QNX Neutrino, the timer ID is
returned through the third parameter, andg¢hgevent structure is filled in
differently.

QNX Neutrino equivalent:
tolower()

In migration library?
No

QNX Neutrino equivalent:
toupper()

In migration library?
No

The following functions have no QNX Neutrino equivalent, and aren’t in the migration
library; consider usingyslog() for logging instead:

112 Appendix: A e QNX 4 Functions & QNX Neutrino Equivalents July 24, 2006

[0 2006, QNX Software Systems GmbH & Co. KG.

Trigger()

umount()

ungetch()

unlock()

July 24, 2006

Trace0()
TraceOb()
Tracel()
Trace2()
Trace2b()
Trace3()

QNX Neutrino equivalent:

N/A

In migration library?
Yes

Traced()
Tracedb()
Trace5()
Tracebh()
Traceb()
Trace6h()

Proxies have been replacedmyses. See the section on “Proxies vs pulses” in the
chapter on Programming Issues in this guide.

The migration libraryTrigger () function works the same as the QNX 4 one, but it's
slower if the “triggerer” is in a different process than that which the proxy is attached
to. For details, see thEigger() function in the Migration Library chapter in this

guide.

QNX Neutrino equivalent:

umount()

In migration library?
No

This is supported, but it now has unused flags parameters.

QNX Neutrino equivalent:

ungetc()

In migration library?
No

QNX Neutrino equivalent:

fentl () with F_.SETLK

In migration library?
No

Appendix: A e QNX 4 Functions & QNX Neutrino Equivalents 113

[0 2006, QNX Software Systems GmbH & Co. KG.

_vbprintf()
QNX Neutrino equivalent:
vsnprintf()
In migration library?
No

veprintf()
QNX Neutrino equivalent:
vprintf(), with / dev/ t t y set as standard output.

In migration library?
No

vcscanf()
QNX Neutrino equivalent:
vsscanf(), with / dev/ t t y set as standard output.

In migration library?
No

Writemsg()
QNX Neutrino equivalent:
MsgWrite()
In migration library?
Yes

This function takes the receive ID returned frdisgReceive() instead of a process ID.

Writemsgmx()

QNX Neutrino equivalent:
MsgWritev()

In migration library?
Yes

114 Appendix: A e QNX 4 Functions & QNX Neutrino Equivalents July 24, 2006

[0 2006, QNX Software Systems GmbH & Co. KG.

O This function takes the receive ID returned frdvisgReceive() instead of a process ID.

Yield()
QNX Neutrino equivalent:
sched_yield()

In migration library?
Yes

July 24, 2006 Appendix: A e QNX 4 Functions & QNX Neutrino Equivalents 115

Appendix B

QNX 4 functions supported by QNX
Neutrino

July 24, 2006 Appendix: B « QNX 4 functions supported by QNX Neutrino 117

[0 2006, QNX Software Systems GmbH & Co. KG.

Some functions from the QNX 4 C library are present in QNX Neutrino, but behave
differently or have a slightly different set of arguments to meet the POSIX 1003.1
specification.

These QNX 4 functions are currently available to QNX Neutrino programs (note that
most of them are part of the ANSI C library or POSIX 1003.1 spec):

July 24, 2006

abort() chroot()
abs() chsize()
accept() clearenv()
access() clearerr()
acos() clock()
acosh() clock getres()
alarm() clock_gettime()
alloca() clock_nanosleep()
asctime() clock_settime()
asin() close()
asinh() closedir()
assert() closdlog()
atan() _cmdname()
atan2() confstr()
atanh() connect()
atexit() cos()
atof() cosh()
atoh() creat()
atoi() ctermid()
atol() ctime()
basename() delay()
bemp() difftime()
bcopy() div()
bind() dn_comp()
bindresvport() dn_expand()
brk() ds_clear()
bsearch() ds_create()
bzero() ds_deregister()
ds_flags()
cabs()
calloc() ds.get()
ceil() ds_register()
cfgetispeed() ds._set()
cfgetospeed() dup()
cfree() dup2()
cfsetispeed() eaccess()
cfsetospeed() endgrent()
chdir() endhostent()
chmod() endnetent()
chown() endprotoent()

Appendix: B ¢« QNX 4 functions supported by QNX Neutrino

119

[0 2006, QNX Software Systems GmbH & Co. KG.

endpwent()
endservent()
environ
eof()

errno
execl()
execle()
execlp()
execlpe()
execv()
execve()
execvp()
execvpe()
_exit()
exit()

exp()

fabs()
fchmod()
fchown()
fclose()
fcloseall()
fentl ()
fdatasync()
fdopen()
feof()
ferror()
fflush()
ffs()
fgetc()
fgetchar()
fgetpos()
fgets()
fileno()
floor ()
flushall()
frod()
fnmatch()
fopen()
fork()
fpathconf()
fprintf()
fputc()
fputchar ()
fputs()
fread()

free()

Appendix: B ¢« QNX 4 functions supported by QNX Neutrino

freopen()
frexp()
fscanf()
fseek()
fsetpos()
fstat()
fsync()
ftell()
ftime()
ftruncate()
ftw()
fwrite()

getc()

getchar()
getewd()
getdtablesize()
getegid()
getenv()
geteuid()
getgid()
getgrent()
getgrgid()
getgrnam()
getgrouplist()
getgroups()
gethostbyaddr ()
gethostbyname()
gethostent()
gethostname()
getitimer()
getlogin()
getnetbyaddr()
getnetbyname()
getnetent()
getopt()
getpass()
getpeername()
getpgid()
getpgrp()
getpid()
getppid()
getprio()
getprotobyname()
getprotobynumber ()
getprotoent()
getpwent()

July 24, 2006

[0 2006, QNX Software Systems GmbH & Co. KG.

July 24, 2006

getpwnam()
getpwuid()
getrusage()
gets()
getservbyname()
getservbyport()
getservent()
getsid()
getsockname()
getsockopt()
gettimeofday()
getuid()

getw()
gmtime()

h_errno
herror()
host ent
hstrerror()
htonl()
htons()

hypot()

index()
inet_addr()
inet_aton()
inet_Inaof()
inet_makeaddr()
inet_netof()
inet_network()
inet_ntoa()
inet_ntop()
inet_pton()
input_line()
ioctl()
isalnum()
isalpha()
isascii()
isatty()
iscntrl()
isdigit()
isfdtype()
isgraph()
islower ()
isprint()
ispunct()
isspace()

isupper ()
isxdigit()
itoa()
j00

110

inQ

kill()
killpg()

labs()
Idexp()

Idiv()

link()
listen()
localeconv()
localtime()
log()
10g10()
login_tty()

longjmp()
[seek()

Istat()
[toa()
Itrunc()

main()
malloc()
max()
mblen()
mbstowcs()
mbtowc()
memccpy()
memchr ()
memecmp()
memcpy()
memicmp()
memmove()
memset()
min()

mkdir ()
mkfifo()
mknod()
mktemp()
mktime()
mmap()
modem_open()

Appendix: B ¢« QNX 4 functions supported by QNX Neutrino

121

[0 2006, QNX Software Systems GmbH & Co. KG.

modem_read()
modem_script()
modem.write()
modf()
mprotect()

ma_close()
mg_getattr()
ma_notify()
ma-open()
mg_receive()
ma-send()
mqg_setattr()

ma_unlink()
munmap()

nanosleep()
net ent
nice()
ntohl()
ntohs()

offsetof()
open()

opendir()
openlog()

pathconf()
pause()
pclos()
perror()
pipe()
popen()
powW()
printf()

pr ot oent
putc()
putchar()
putenv()
puts()
putw()

gsort()

Raccept()
raise()
rand()
random()
Rbind()
remd()

Appendix: B ¢« QNX 4 functions supported by QNX Neutrino

Rconnect()
rdchk()
read()
readdir()
readlink()
readv()
realloc()
real path()
re_comp()
recv()
recvfrom()
recvmsg()
re_exec()
regcomp()
regerror()
regexec()
regfree()
remove()
rename()
res_init()
res_mkquery()
res_query()
res_querydomain()
res_search()
res_send()
rewind()
rewinddir()
Rgetsockname()
rindex()
Rlisten()
rmdir()
Rremd()
rresvport()
Rselect()
ruserok()

sbrk()

scandir()

scanf()
sched_getparam()
sched_getscheduler ()
sched_setparam()
sched_setscheduler ()
sched_yield()
searchenv()

select()
sem_destroy()

July 24, 2006

[0 2006, QNX Software Systems GmbH & Co. KG.

July 24, 2006

sem.init()
sem_post()
sem_trywait()
sem_wait()
send()
sendmsg()
sendto()
servent
setbuf()
setegid()
setenv()
seteuid()
setgid()
setgrent()
sethostent()
sethosthame()
setitimer ()
setjmp()
setlinebuf()
setlocale()
setlogmask()
setnetent()
setpgid()
setpgrp()
setprio()
setprotoent()
setpwent()
setregid()
setreuid()
setservent()
setsid()
setsockopt()
settimeofday()
setuid()
setvbuf()
shm_open()
shm_unlink()
shutdown()
sigaction()
sigaddset()
sigblock()
sigdel set()
sigemptyset()
si gevent
sigfillset()
sigismember ()

siglongjmp()
sigmask()
signal()
sigpending()
sigprocmask()
sigsetjmp()
sigsuspend()
sin()

sinh()

sleep()

snprintf()
sockatmark()
socket()
SOCKSinit()
sopen()
spawnl ()
spawnle()
spawnlip()
spawnl pe()
spawnv()
spawnve()
spawnvp()
spawnvpe()
sprintf()
sart()
srand()
sscanf()
stat()
strcasecmp()
strcat()
strchr()
stremp()
strempi()
strcoll()
strepy()
strespn()
strdup()
strerror()
strftime()
stricmp()
strien()
striwr()
strncat()
strncmp()

strncpy()
strnicmp()

Appendix: B ¢« QNX 4 functions supported by QNX Neutrino

[0 2006, QNX Software Systems GmbH & Co. KG.

124

strnset()
strpbrk()
strrchr()
strrev()
strsep()
strset()
strsignal()
strspn()
strstr()
strtod()
strtok()
strtol()
strtoul ()
strupr()
strxfrm()
symlink()
sync()
sysconf()
syslog()
system()

tan()

tanh()
tedrain()
tedropling()
tcflow()
tcflush()
tcgetattr()
tcgetpgrp()
tcsendbreak()
tcsetattr ()
tcsetpgrp()
tell()
tempnam()
time()

timer _delete()
timer _gettime()
timer _settime()

These QNX 4 functions are available under QNX Neutrino, but have a different API or

usage:

getwd()
glob()

inet_ntoa_r()

Appendix: B ¢« QNX 4 functions supported by QNX Neutrino

times()
tmpfile()
tmpnam()
tolower ()
toupper ()
truncate()
ttyname()
tzset()

ultoa()

umask()
uname()
ungetc()
unlink()
usleep()
utime()

utimes()

utoa()

va_arg()
va_end()
va start()
vfork()
viprintf()
vfscanf()
vprintf()
vsprintf()
vsscanf()
vsyslog()

wait()
waitpid()
westombs()
wctomby()

write()

yo()
y10
yn()

timer_create() — the QNX 4 version was based on a draft standard.

July 24, 2006

[0 2006, QNX Software Systems GmbH & Co. KG.

o writev()

e crypt() — a Unix-compatible version; for the QNX 4 version, wgex_crypt()

July 24, 2006 Appendix: B « QNX 4 functions supported by QNX Neutrino 125

