
QNX Neutrino Realtime Operating System
QNX 4 to QNX Neutrino

Migration Guide

For QNX Neutrino 6.2

 2006, QNX Software Systems GmbH & Co. KG.



 2000–2006 QNX Software Systems GmbH & Co. KG. All rights reserved.

Published under license by:

QNX Software Systems International Corporation
175 Terence Matthews Crescent
Kanata, Ontario
K2M 1W8
Canada
Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web:http://www.qnx.com/

Publishing history

Electronic edition published 2006

Technical support options

To obtain technical support for any QNX product, visit theTechnical Support section in theServices area on our website (www.qnx.com). You’ll find a wide range of support
options, including our free web-basedDeveloper Support Center.

QNX, Neutrino, Photon, Photon microGUI, Momentics, and “Build a More Reliable World” are trademarks, registered in certain jurisdictions, of QNX Software Systems GmbH & Co. KG and are used

under license by QNX Software Systems International Corporation. All other trademarks belong to their respective owners.



Contents

About This Guide vii

Meet the New OS 11
Architecture 3

Support for multiple processors 3

SMP 3

Portability 3

Moving files from QNX 4 to QNX Neutrino 3

Development Environment 52
Compiler & tools 7

Header files 7

Libraries 7

Static and dynamic libraries 7

Useful manifests 8

Debugging 8

Buildfiles and images 8

Programming Issues 93
Scheduling 11

Priority range 11

Process issues 12

Process creation 12

Process flags 13

Native QNX networking 13

I/O Managers vs Resource Managers 13

Messages 14

Connection-oriented philosophy 14

Channel IDs vs process IDs 14

How should the receiver be written? 15

How does the sender find the receiver? 15

Receiving messages in a resource manager 16

PPFSIGCATCH 17

July 24, 2006 Contents iii



 2006, QNX Software Systems GmbH & Co. KG.

Message priority 17

Priority floating 18

Receiving from across the network 18

Events 18

Proxies vs pulses 19

Example of pulses with a resource manager 20

Signal services 22

Signals and threads 23

Shared memory 24

Semaphores 24

Named semaphores 24

POSIX Message Queues 24

Timers 25

Timeouts 25

Interrupts 25

Hardware I/O 26

Port I/O 26

Memory-mapped I/O 27

Memory for DMA 28

PCI functions 28

Getting system information 28

Getting process information 28

The term () Functions 28

Migration Methodology 314
A suggested approach 33

Get to know QNX Neutrino 33

Install the OS 33

Move your environment 33

Move your utilities 34

Plan! 34

Moving a program 34

Analysis 34

Architectural issues 35

Converting header files 35

Converting pathnames 35

Converting functions, etc. 35

The mig4nto Utility 375
mig4nto 39

iv Contents July 24, 2006



 2006, QNX Software Systems GmbH & Co. KG.

The Migration Library 416
The migration process manager (mig4nto-procmgr) 43

Migration functions that requiremig4nto-procmgr 44

The migration library functions 44

QNX 4 Functions & QNX Neutrino Equivalents 53A

QNX 4 functions supported by QNX Neutrino 117B

July 24, 2006 Contents v





About This Guide

July 24, 2006 About This Guide vii





 2006, QNX Software Systems GmbH & Co. KG.

TheQNX 4 → QNX Neutrino Migration Guide is intended as a kind of road map to
help you:

� discover the differences and additional functionality of QNX Neutrino

� modify your existing QNX 4 source code to work under QNX Neutrino.

Written specifically for the QNX 4 applications developer, the guide’s main focus is
the API; it doesn’t deal with differences in system commands, editors, and so on.
Nevertheless, we hope you’ll find the guide a valuable resource for determining what
you need to do to your existing software in order to take advantage of the rich new
features of QNX Neutrino.

The following may help you find what you need in this guide:

When you want to: Go to:

Get an overview of the differences
between the two systems

Meet the New OS

Plan your migration strategy Migration Methodology

Find out about headers, libraries,
debugging, buildfiles, and more

Development Environment

Learn about threads, connection IDs,
pulses, resource managers, and more

Programming Issues

Look up a cover function The Migration Library

Identify items in your QNX 4 programs
that need attention

Themig4nto Utility

Look up the QNX Neutrino equivalent
for any QNX 4 function

QNX 4 Functions & QNX Neutrino
Equivalents

View the list of QNX 4 functions
supported by QNX Neutrino

QNX 4 functions supported by QNX
Neutrino

July 24, 2006 About This Guide ix





Chapter 1

Meet the New OS

In this chapter. . .
Architecture 3
Support for multiple processors 3
SMP 3
Portability 3

July 24, 2006 Chapter 1 � Meet the New OS 1





 2006, QNX Software Systems GmbH & Co. KG. Architecture

Architecture
Architecturally, QNX Neutrino is the same as QNX 4. It provides an open-systems
POSIX API in a robust scalable form suitable for a wide range of solutions — from
tiny resource-constrained systems to high-end distributed computing environments.

Support for multiple processors
One big difference between QNX 4 and QNX Neutrino is that the new OS runs on a
number of different processors — x86, ARM, MIPS, PowerPC, and SH4. Assuming
that you didn’t use any processor-specific tricks, a program written for QNX Neutrino
on an x86 could be recompiled and relinked so that it will also run on a Power PC
machine.

SMP
QNX Neutrino can also run on a multi-processor machine. This machine might have 4
Gbytes of physical memory managed by a number of processors.

Portability
QNX Neutrino was also designed to be even more portable than QNX 4. The new OS
contains newer POSIX components (e.g. POSIX threads). New functions from the
Unix 98 standard and from other sources have been added.

Moving files from QNX 4 to QNX Neutrino
Migrating files from a QNX 4 system to a QNX Neutrino system isn’t complicated for
this simple reason: they use the same filesystem. If you’re going to run QNX Neutrino
on a PC with a QNX 4 filesystem, then all the files in the QNX 4 partition or disk are
accessed exactly the same as they were before.

In fact, you could replace your/.boot or /.altboot file with a QNX Neutrino
bootable image and reboot into the new QNX Neutrino OS.

Typical development cycle

Many developers may want to have their QNX Neutrino target machine act as an NFS
or CIFS client; this is certainly possible.

Using this scheme, you can set up a QNX 4 development system and a QNX Neutrino
target system that has access to the QNX 4 files. With two machines side-by-side, a
typical development cycle becomes:

From the QNX 4 machine:

1 Edit.

2 Compile.

3 Link.

July 24, 2006 Chapter 1 � Meet the New OS 3



Portability  2006, QNX Software Systems GmbH & Co. KG.

From the QNX Neutrino machine:

➤ Run.

4 Chapter 1 � Meet the New OS July 24, 2006



Chapter 2

Development Environment

In this chapter. . .
Compiler & tools 7
Header files 7
Libraries 7
Useful manifests 8
Debugging 8
Buildfiles and images 8

July 24, 2006 Chapter 2 � Development Environment 5





 2006, QNX Software Systems GmbH & Co. KG. Compiler & tools

Compiler & tools
The compiler used for QNX Neutrino is the GNU compiler (gcc). Currently,
development can be done from these hosts:

� QNX Neutrino

� MS-Windows

� Solaris

If you have the QNX Momentics Professional Edition, you can develop using the
Integrated Development Environment (IDE) from any host. Alternatively, you can use
command-line tools that are based on the GNU compiler.

If you have the QNX Momentics Standard Edition, you have only the command-line
tools available.

For MS-Windows hosts, you also have the option of getting the CodeWarrior tools
from Metrowerks. Currently, the CodeWarrior IDE also usesgcc.

Note that when developing using the GNU compiler, you don’t run the compiler
directly. Instead, you use a front-end tool calledqcc. A minimum compile would look
like this:

qcc myprogram.c -o myprogram

Header files
Header files reside under${QNX TARGET}/usr/include, where the value of
QNX TARGET depends on where you’re doing your development.

Libraries
Libraries that you link against are in${QNX TARGET}/${PROCESSOR}/lib.

When migrating from QNX 4,PROCESSOR would most likely be x86.

Static and dynamic libraries
QNX Neutrino supports both static libraries and dynamic libraries. If you link with
static libraries, then code from the libraries is inserted into your executable.

Dynamic libraries in QNX Neutrino are the equivalent of shared libraries in QNX 4.
In fact, we usually call themshared objects, though many people also know them as
DLLs. In the case of dynamic libraries, the code for the library is loaded into memory
when the first program that uses that library is run.

July 24, 2006 Chapter 2 � Development Environment 7



Useful manifests  2006, QNX Software Systems GmbH & Co. KG.

Useful manifests
Here are some manifests you may find useful:

#if defined( WATCOMC )
/* Then the program was compiled with Watcom */

#elif defined( GNUC )
/* Then the program was compiled with GCC */

#elif defined( MWERKS )
/* Then the program was compiled with Metrowerks */

#endif

As well, you could do things like:

#if defined( QNXNTO )
/* Then the program was compiled for QNX Neutrino */

#else
/* Then the program was compiler for QNX 4 */

#endif

Debugging
There are a variety of options that you can use for debugging:

� the IDE that’s part of the QNX Momentics Professional Edition

� gdb, which is available on all hosts

� the CodeWarrior IDE debugger from Metrowerks

� ddd under QNX Neutrino.

Thegdb debugger is a command-line program used in conjunction with thegcc

compiler (recall thatgcc is the back-end compiler for theqcc command) and is
documented in theUtilities Reference.

Buildfiles and images
Image files are conceptually the same as in QNX 4, but structurally very different.
There is asysinit file if you’re using QNX Neutrino, but there isn’t one by default
on your target. The buildfile language has been expanded to include primitive
scripting.

For more information, see the chapter on “Making an OS Image” in theBuilding
Embedded Systems book in the Embedding SDK package, as well as the
documentation on themkifs utility.

8 Chapter 2 � Development Environment July 24, 2006



Chapter 3

Programming Issues

In this chapter. . .
Scheduling 11
Process issues 12
Native QNX networking 13
I/O Managers vs Resource Managers 13
Messages 14
Events 18
Proxies vs pulses 19
Signal services 22
Shared memory 24
Semaphores 24
POSIX Message Queues 24
Timers 25
Interrupts 25
Hardware I/O 26
Getting system information 28
Getting process information 28
Theterm () Functions 28

July 24, 2006 Chapter 3 � Programming Issues 9





 2006, QNX Software Systems GmbH & Co. KG. Scheduling

Scheduling
The main difference in scheduling between QNX 4 and QNX Neutrino is that
scheduling is doneby thread, not by process. In QNX Neutrino, the highest-priority
thread is chosen to run, regardless of what process it’s in.

This has some interesting ramifications. For instance, from a QNX 4 perspective, a
process can preempt itself! Of course, this is minimized when migrating to QNX
Neutrino, since all your processes will be single-threaded.

Priority range
QNX Neutrino extends the priority range (from 0 to 31) to0 through 63. Higher
numbers still represent higher priority. Thesched get priority min() and
sched get priority max() calls simply return the minimum and maximum priority; the
specialidle thread (in the process manager) has priority 0.

At each priority, the threads in QNX Neutrino are scheduled as in QNX 4, with the
exception that there’s no longer an adaptive scheduling policy. The available policies
are FIFO and round-robin, both of which operate the same as in QNX 4.

Remember that these policies come into play only when there’s more than one thread
ready to runat the same priority.

According to POSIX, there’s a third scheduling algorithm calledSCHED OTHER,
which is up to the OS vendor to decide what it actually means. Currently in QNX
Neutrino,SCHED OTHERis the same asSCHED RR (round-robin), but that may
change some day, so we don’t recommend usingSCHED OTHER.

☞

QNX Neutrino supports thegetprio() andsetprio() function calls from QNX 4. But
because the scheduling in QNX Neutrino is by thread, not by process, there’s a caveat
here: When attempting to set the priority of a process by callingsetprio(), thread
number 1 in the process has its priority changed,not all threads in the process.

If the process ID given tosetprio() is zero, indicating the current process, it’s the
calling thread within that process whose priority will be set. Since QNX 4 code ported
to QNX Neutrino would likely contain contain one thread anyway, this is just what
you’d want to have happen.

Because of its increased number of synchronization primitives, as well as the inclusion
of threads, QNX Neutrino has more states than QNX 4:

If a QNX Neutrino thread is in the RUNNING state, then it’s the thread that’s
actually using the CPU. And since QNX Neutrino supports SMP, there could be
multiple threads in this state.
When a thread is in the READY state, it wants to execute on a CPU, but it’s not
the thread that’s executing. This distinction between RUNNING and READY was
not visible to the user in QNX 4.
The SEND-blocked, RECEIVE-blocked, REPLY-blocked, STOPPED,
SEM-blocked, and DEAD states are the same as in QNX 4.

July 24, 2006 Chapter 3 � Programming Issues 11



Process issues  2006, QNX Software Systems GmbH & Co. KG.

QNX Neutrino also has these additional states, which were either slightly different or
not present at all in QNX 4:

If a thread calls thesigsuspend() function, it will be SIGSUSPEND-blocked
awaiting a signal.

If the thread callssigwaitinfo(), it’s also waiting for a signal to occur; this is the
SIGWAITINFO-state.

A thread can also request to be suspended for a short period of time by calling
nanosleep(), which puts the thread into the NANOSLEEP state until the time has
expired.

QNX Neutrino adds two synchronization methods (mutex and condvar). If a
thread is awaiting one of these, it would be in the MUTEX state or the CONDVAR
state until the conditions allow the thread to continue.

A thread can callpthread join() to await the termination of a child thread. If that
thread hasn’t terminated yet, the caller is in the JOIN state until the child thread
terminates.

If a thread, such as one in a device driver, is waiting for an interrupt, it could be in
the INTR state (InterruptWait()) until the interrupt happens and SIGEVINTR
event is delivered to it.

The QNX Neutrinopidin utility lets you see the thread state under the “STATE”
column. It’s roughly analogous tops -ef in QNX 4. In cases where a thread is
blocked awaiting some other thread (e.g. waiting for the reply to a write on a serial
port), the “Blocked” column shown bypidin indicates the thread ID that the thread is
blocked on.

Process issues
Process creation

Theqnx spawn() function and theqnx spawn options structure are no longer
supported. Thespawn*() family (spawnl(), spawnve(), ...) of functions still exist.
There’s also a new function calledspawn() that provides much of the functionality in
theqnx spawn options structure.

POSIX has a new function calledposix spawn(), which we don’t support as of the
time of this writing.

☞

Something similar to the io vector (iov parameter toqnx spawn() andiov member of
qnx spawn options) is available via thefd map to spawn(). However, the FDs passed
in this will be the only ones open for the child.

When calling thespawn() function, note there are some undocumented SPAWNflags.
These are undocumented, because they’re mainly intended for people migrating from
QNX 4. They can be found in the<spawn.h> header file. Some readily recognizable
ones are:

12 Chapter 3 � Programming Issues July 24, 2006



 2006, QNX Software Systems GmbH & Co. KG. Native QNX networking

� SPAWN NOZOMBIE

� SPAWN NEWPGROUP

� SPAWN HOLD

� SPAWN SETSID

� SPAWN TCSETPGROUP

QNX Neutrino also supportsfork(), but there’s the restriction thatfork() can’t be used
within a multithreaded process. For this case, you might considervfork() instead.

Process flags
The following are the issues involved with the most frequently used flags you can set
in QNX 4 using theqnx pflags() function:

� PPFIMMORTAL — This is no longer supported. You can’t catch or ignore
SIGKILL.

� PPFINFORM — This is no longer supported. There’s no replacement that will let
you know of any process dying. You could periodically poll the process manager
by walking through the pids in/proc, but this is highly inefficient. For other
methods, see the section on “Process termination” in the chapter on processes in
theProgrammer’s Guide.

� PPFPRIORITY FLOAT — This is the default in QNX Neutrino. To disable this
behavior, pass theNTO CHF FIXED PRIORITY to your call toChannelCreate().

� PPFPRIORITY REC — This is the behavior in QNX Neutrino. It can’t be turned
off.

� PPFSIGCATCH — To get this behavior, pass theNTO CHF UNBLOCK flag to
your call toChannelCreate().

� PPFSERVER — This is no longer supported.

Native QNX networking
The equivalent of FLEET, the QNX 4 native networking, is Qnet. From the command
line, instead of using node IDs (“nids”, you use node names. From code, instead of
using nids, you use node descriptors. For detailed information on these issues, see the
sections called Qnet Networking in theProgrammer’s Guide andSystem Architecture.

I/O Managers vs Resource Managers
QNX Neutrino has the same concept as QNX 4 I/O managers, but they’re called
resource managers instead. In QNX 4, unless you had used the I/O manager
framework available as free software, then you’ll have to rewrite most of your I/O
manager from scratch.

July 24, 2006 Chapter 3 � Programming Issues 13



Messages  2006, QNX Software Systems GmbH & Co. KG.

In QNX Neutrino, a resource manager library is provided for you as part of the regular
libraries. This library hides a lot of the gory details, allowing you to concentrate on
code that’s specific to your application while still presenting a POSIX front end to the
client.

The downside to this is that migrating I/O managers will likely be the one set of code
that involves the most work, because this is where there are the most differences. The
work is the least if you had used the I/O manager framework that’s available for QNX
4 as free software, since your process will be similar architecturally.

There’s a chapter in the theProgrammer’s Guide called “Writing a Resource
Manager” that goes into detail on how to write these.

Messages
Connection-oriented philosophy

The QNX Neutrino OS still uses the send/receive/reply model. A receiver still blocks
on some receive function call, a sender still sends via some send function call and
blocks until the receiver replies.

The functions involved are:

� MsgReceive*()

� MsgSend*()

� MsgReply*()

� MsgRead*()

� MsgWrite*()

There’s still the multipart message option — the above functions whose names contain
a “v” suffix are the multipart message versions (e.g.MsgSendv() is analogous to
Sendmx()).

There’s also an additional function for replying calledMsgError(). It takes an errno
value as a parameter and causes theMsgSend*() to return with -1 anderrno set to this
value. TheMsgReply*() also has an interesting new status parameter. Whatever you
pass for this will be what theMsgSend*() returns.

Channel IDs vs process IDs
There are also some fundamental differences. Under QNX 4, the sender sent to a
process via a process ID, but this no longer works when there could be multiple
threads within the receiving process.

Under QNX Neutrino, some thread in the receiving process creates a channel (via
ChannelCreate()). Then whichever thread or threads want to receive messages from
that channel call aMsgReceive*() function, passing it the channel ID (chid). So, in
QNX Neutrino, you receive using channel IDs, not process IDs.

14 Chapter 3 � Programming Issues July 24, 2006



 2006, QNX Software Systems GmbH & Co. KG. Messages

Some thread in the sending process then creates a connection to that channel (usually
via ConnectAttach()). Then whichever thread or threads want to send a message will
send using the connection ID (coid) via aMsgSend*() function.

So, in QNX Neutrino, you send through aconnection, not to a process ID. The
MsgReceive*() function returns a receive ID (rcvid) and passes this to the
MsgReply*(). So in QNX Neutrino, you reply to a receive ID, not a process ID.

Notice that this is connection-oriented, unlike in QNX 4 where any sender could send
to any receiver just by passing the receiver’s process ID to the send function call. In
QNX Neutrino, the receiver must deliberately advertise its channel ID before any
sender can create a connection to it and send.

How should the receiver be written?
There are various ways to write the receiver. You have the same options as under QNX
4 — from plain receiver all the way to resource managers (called I/O managers in
QNX 4). The difference is we recommend that you write receivers as resource
managers in QNX Neutrino applications.

One of the reasons for this recommendation is that the resource manager library takes
care of many of the details for you. This is even more important in QNX Neutrino as
there are now more details. For example, in QNX 4 when receiving a message from a
sender on another node of the native QNX network, the number of bytes received was
thesmaller of what the sender was sending and what the receiver was asking to
receive, but no smaller.

Under QNX Neutrino, however, the receiver could potentially have receivedless than
what the sender was sending and the receiver was receiving, depending on the packet
size of the protocol used. The resource manager library handles this detail for you (if
you’re not using the resource manager library, see the section “Receiving from across
the network” in this chapter.

Although we recommend writing resource managers, we also recognize that people
migrating from QNX 4 who used a simpleReceive() loop may not want to make the
many changes required to convert to resource managers. As such, this section will go
into some detail on doing properMsgReceive() handling.

How does the sender find the receiver?
We said above that the server creates a channel and advertises the channel ID. The
sender then somehow determines that channel ID and connects to it. But how does the
server advertise the channel ID?

1 If you’re willing to rewrite your receivers, or if you previously wrote them as
I/O managers, then you could write receivers as resource managers. In this case,
theChannelCreate() is done by the resource manager library and the
ConnectAttach() is done by theopen(). The sender finds the receiver by calling
open():
fd = open( name receive registered, ...);
...

July 24, 2006 Chapter 3 � Programming Issues 15



Messages  2006, QNX Software Systems GmbH & Co. KG.

MsgSend(fd, ...);

One thing that falls very nicely from this is that to connect to a server on another
node of the native QNX network, you need only put node information on the
front of the name you pass toopen() (e.g.fd =

open("/net/console/dev/robotarm", ...)).

Note that a resource manager is the equivalent of an I/O manager in QNX 4. If
you wrote your I/O managers using the iomanager framework in/usr/free

(or had a similar one of your own) then, although you’ll have to use different
function calls, architecturally the resource manager library and the I/O manager
framework are very similar.

2 In QNX Neutrino, there’s a set of functions, includingname attach() and
name open(), that do the job thatqnx name attach() andqnx name locate() do
in QNX 4. Note that global names are supported via thegns process.

3 If the receiver is parent and the sender is child, then the channel ID can be
passed in spawn arguments lists.

4 If you have a starter process that starts the above two processes, then starter
could create a channel and pass the channel ID to its children via command-line
args. The children would then send their respective channel IDs to starter
(effectively registering with starter) and request each other’s channel IDs from
starter.

The method that you choose depends on how much migrating you wish to do. If you
want to do as little as possible, then the migration library is the starting place. If you
don’t mind rewriting a little of your Send code, thenname attach()/name open()
might be the way to go. If you’re already using I/O managers or want to migrate to
resource managers, then go ahead and do so.

This solution is deprecated for Neutrino, version 6.3.0.☞

Receiving messages in a resource manager
When looking at writing a resource manager, one of the first things you’ll wonder
about is how to send messages to it and get replies back. There are various ways:

1 The POSIX way is for the sender to use the POSIXdevctl() function call to send
the message. The resource manager would have anio devctl handler
registered for processing the message. The only disadvantage to this approach is
that there’s only one message buffer parameter and one size parameter in the
devctl() call. This means that if you want to send a 10-byte message and get a
1000-byte reply back, you must provide a 1000-byte buffer and specify a size of
1000 bytes. Even though the buffer contains only 10 bytes of data for the send
message, it will send the entire 1000 byte buffer.

2 Another way is to usemessage attach() to register a range of message types and
a handler to be called whenever a message is received whose type is in that

16 Chapter 3 � Programming Issues July 24, 2006



 2006, QNX Software Systems GmbH & Co. KG. Messages

range. With this method, the sending can be done viaMsgSend*() and the entire
contents of the send message and the reply message are in your control.

3 You can send messages usingMsgSend*() by putting a header of type
io msg t at the front of your message. Set the type member toIO MSG. The
resource manager would register a msg handler in the
resmgr context funcs t structure, and when a message of typeIO MSG
arrives, your msg handler will be called with the message. The reply can be
anything.

Don’t forget that the above steps show how to send a message and get a reply back. If
all your client wants to do is send some data, then thewrite() function call may be all
you need. Theread() function can be used for the opposite direction.

PPF SIGCATCH
Just as QNX 4 has thePPFSIGCATCHflag, QNX Neutrino has the
NTO CHF UNBLOCK flag for the same reasons. In QNX Neutrino, the flag is set for
the channel that’s being received on — it’s passed toChannelCreate(). One difference
is that in QNX 4 this affected REPLY-blocked senders who are hit with a signal. In
QNX Neutrino, it still affects REPLY-blocked senders who are hit with a signal, but
also if they want to time out (viaTimerTimeout() or timer timeout()).

The NTO CHF UNBLOCK flag is automatically set for resource managers. If the
receiver is a resource manager, then when the REPLY-blocked sender wants to
unblock, the resource manager library will call an iounblock handler. If you don’t
provide an iounblock handler, then default handling will be done for you resulting in
your client potentially not unblocking when it wants to. Thercvid member of the
resmgr context t structure (ctp->rcvid — you’ll learn about this structure
when you do resource managers) is the one you would reply to and/or use to look up
the sender in a list of blocked senders.

If you’re callingMsgReceive*() directly, then a pulse will arrive from the kernel
(pulses are discussed later). The code member of the pulse message will be
PULSECODE UNBLOCK and the value member of the pulse message will be the
receive ID from the time that theMsgReceive*() received the sender’s message. This
receive id is who you would reply to and/or use to look up the sender in a list of
blocked senders. Note that it’s generally not a good idea to keep the receive id around
once the reply has been done, because after that point its value is recycled.

Message priority
In QNX 4, the PPFPRIORITY RECflag would be used to have messages be received
in the order in which they were sent. In QNX Neutrino, this is automatically the
behavior of the receiver.

July 24, 2006 Chapter 3 � Programming Issues 17



Events  2006, QNX Software Systems GmbH & Co. KG.

Priority floating
The behavior that you get in QNX 4 by settingPPFPRIORITY FLOAT is now the
default in QNX Neutrino. To have your receiver’s priority not float, set the
NTO CHF FIXED PRIORITY flag in the call toChannelCreate().

Receiving from across the network
As mentioned above, when receiving a message from a sender on another node of the
native QNX network, it’s possible that the number of bytes received could be smaller
than both what the sender was sending and what the receiver was asking for. The
fourth parameter passed to yourMsgReceive*() is an info parameter of typestruct
msg info. It has a member calledmsglen, which contains the number of bytes that

were actually copied into your receive buffer. It also has a member calledsrcmsglen
which will contain the number of bytes that the sender wants to send, but only if you
pass theNTO CHF SENDERLEN flag when callingChannelCreate(). So a code
snippet for handling this situation would be:

int chid, rcvid;
struct msg info info;
my msg t msg;

chid = ChannelCreate ( NTO CHF SENDER LEN);

for (;;) {
rcvid = MsgReceive (chid, &msg, sizeof(msg), &info);
if (rcvid > 0 && info.srcmsglen > info.msglen &&

info.msglen < sizeof(msg)) { // got it all?
int nbytes;

if ((nbytes = MsgRead r(rcvid, (char *) msg + info.msglen,
sizeof(msg) - info.msglen, info.msglen)) < 0) {

MsgError(rcvid, -nbytes); // nbytes contains an errno value
...

}
...

}
// now we have it all
...

}

Events
Later in this chapter we’ll look at pulses, a replacement for QNX 4 proxies that also let
you pass a little information along. We’ll also examine POSIX signals. Because these
(and other) primitives are similar, there’s an underlying mechanism called anevent
that handles them.

An event in QNX Neutrino is a form of notification that can come from a variety of
places: timer, interrupt handler, your threads, etc. An event can contain a pulse. A user
hitting Ctrl – C on a keyboard causes an event containing a signal to be delivered. A
timer could expire, delivering an event containing a pulse.

18 Chapter 3 � Programming Issues July 24, 2006



 2006, QNX Software Systems GmbH & Co. KG. Proxies vs pulses

A thread delivers an event to another thread by callingMsgDeliverEvent(). We’ll see
an example of this when we talk about pulses. This function takes a receive id and an
event structure of typestruct sigevent. The latter contains several fields,
including:

sigev notify The type of the event, whether it’s a signal, a pulse, or whatever.

sigev priority The priority of the event; higher numbers mean higher priority.

sigev code andsigev value

The code and value fields for a pulse.

sigev signo The signal number for a signal.

There are macros in the include file<sys/siginfo.h> that make it simple for you to
fill in the fields in this structure.

Proxies vs pulses
QNX 4 proxies have disappeared from QNX Neutrino. They’ve been replaced by
pulses. A pulse is like a QNX 4 proxy in one critical way — it’sasynchronous, so the
sending thread doesn’t block. But the data for QNX 4 proxies was “canned data” that
couldn’t be changed from oneTrigger() call to the next. With pulses, the data can be
different from one “trigger” to the next.

Each QNX Neutrino pulse carries with it two items of information:

� an 8-bit value known as the “code”

� a 32-bit value called the “value”

Although the “code” is a signed quantity, you should use only values in the range
PULSE CODE MINAVAIL to PULSE CODE MAXAVAIL. The remaining code

values are reserved for the OS.

Pulses are received by having your resource manager register a pulse-handler function.
This is done by callingpulse attach(). When the pulse arrives, the handler will be
called.

If you’re not writing a resource manager, then pulses can also be received by the
MsgReceive*() andMsgReceivePulse*() functions. The return value will be zero and
the message buffer will contain a message of typestruct pulse.

In QNX 4, at setup time, the receiver would typically attach a proxy and send the
proxy id to the process doing the triggering. Whenever necessary, the triggerer would
trigger the proxy. In QNX Neutrino, you’d do something very similar. At setup time,
the receiver would fill an event structure with a pulse and send it to the process doing
the delivering. Whenever necessary, the deliverer would deliver the event using
MsgDeliverEvent(). As a result, the receiver would receive a pulse message.

July 24, 2006 Chapter 3 � Programming Issues 19



Proxies vs pulses  2006, QNX Software Systems GmbH & Co. KG.

There’s another function for sending a pulse calledMsgSendPulse(). When migrating
from QNX 4, you would use this to replaceTrigger() in cases where the triggering
process had attached the proxy to the receiver (instead of the receiver attaching the
proxy to itself). WithMsgSendPulse() there’s no event structure to fill in.

Example of pulses with a resource manager
The following code snippets illustrate sending and receiving pulses using resource
managers. The deliverer is a resource manager calledpulsesnd — it registers the
name/dev/pulsesnd.

First of all, since we have two processes communicating with each other, we have the
following in a common header file:

// IOMGR PULSESND identifies the pulsesnd resource manager
#define IOMGR PULSESND IOMGR PRIVATE BASE

#define PULSESND SUBTYPE GIVE EVENT 1

typedef struct {
struct io msg hdr; // standard header for IO MSG messages
struct sigevent event; // the event to deliver

} pulsesnd io msg give event t;

// the reply for IO MSG SUBTYPE GIVE EVENT is empty

Next, we have the receiver process that will be receiving the pulse. The following is
the code that registers the pulse handler, fills in an event structure, and sends the event
structure to the deliverer:

main
{

pulsesnd io msg give event t msg;

... // setup code for the resource manager goes here

// register our pulse handler, note that this call will figure out
// a pulse code for us, pulse handler() will be called whenever
// the pulse arrives

our pulse code = pulse attach (dpp, MSG FLAG ALLOC PULSE,
0, pulse handler, NULL);

// send a pulse event structure to pulsesnd, pulsesnd is the
// process (another resource manager) that will deliver this pulse
// event when data is available. When it does, pulse handler()
// will be called.

fd = open ("/dev/pulsesnd", O RDONLY); // find pulsesnd

// create a connection to the channel that our resource manager is
// receiving on

coid = message connect (dpp, MSG FLAG SIDE CHANNEL);

// fill message buffer with an IO MSG type message (for this
// example)

20 Chapter 3 � Programming Issues July 24, 2006



 2006, QNX Software Systems GmbH & Co. KG. Proxies vs pulses

msg.hdr.type = IO MSG;
msg.hdr.combine len = sizeof(msg.hdr);
msg.hdr.mgrid = IOMGR PULSESND; /* resmgr identifier */
msg.hdr.subtype = PULSESND SUBTYPE GIVE EVENT;

// this macro fills in the event structure portion of the message

SIGEV PULSE INIT(&msg.event, coid, getprio (0), our pulse code, 0);

// send it to pulsesnd so that it can deliver it when it wants to

MsgSend (fd, &msg, sizeof(msg), NULL, 0);

...
}

//
// pulse handler - Will be called when the pulse is delivered
//
int
pulse handler (message context t *ctp, int code, unsigned flags,

void *handle)
{

if ( code == our pulse code ) {
// we got a pulse (we’re not expecting any others, this check
// is for example only)

}
return code;
}

Next we have the code where the deliverer receives the event structure. Note that it is
really a msg type handler that the resource manager library calls whenever a message
of type IO MSG arrives. TheIO MSG that arrives is the message sent to us in the
snippet above. This msg type handler is registered with the resource manager library
just as you would register a read or write handler.

int
io msg (resmgr context t *ctp, io msg t *msg, RESMGR OCB T *ocb)
{

pulsesnd io msg give event t pmsg;

// go get the message again to make sure we got it all

MsgRead(ctp->rcvid, &pmsg, sizeof(pmsg), 0);

// we need to store away the event and the rcvid if we are to
// deliver the pulse later. This is the same idea as saving away
// a proxy id in QNX 4.

pulse event = pmsg.event;
pulserec rcvid = ctp->rcvid;

MsgReply(ctp->rcvid, 0, NULL, 0);

return ( RESMGR NOREPLY);
}

Lastly, when the deliverer process wants to wake up the receiver, it delivers the event.
This is analogous toTrigger(proxy) in QNX 4.

July 24, 2006 Chapter 3 � Programming Issues 21



Signal services  2006, QNX Software Systems GmbH & Co. KG.

// here is where we send the pulse message. Note that pulserec rcvid
// and pulse event were saved away above.

MsgDeliverEvent (pulserec rcvid, &pulse event);

Signal services
Here are the fundamental changes to signals:

1 There are a whole bunch of new user-defined signals. These range in value from
SIGRTMIN to SIGRTMAX (defined in<signal.h>). According to POSIX,
these can carry data and can be queued.

2 The traditional UNIX signals (SIGINT, SIGHUP, etc.) still exist and in fact are
a part of POSIX. According to POSIX, these cannot carry data and cannot be
queued. Note, however, that QNX Neutrino doesn’t enforce this restriction, so
theycan carry data and be queued.

3 As mentioned above, signals can now be queued. Just as in QNX 4, if a signal is
set on a process and that process has the signal blocked (or masked), then the
signal is made pending. Unlike QNX 4, however, if the same signal is set on the
process a second time while the signal is still blocked, QNX Neutrino can
remember that the same signal is now pendingtwice. When the signal is
unblocked (or unmasked), then the signal action will take place twice. This is a
queued signal. It is set on a signal-by-signal basis and is done at the process
level.

The default is that a signal is not queued (i.e. just as in QNX 4). If the signal is
set on the process multiple times while the signal is blocked, when it’s
unblocked the signal will take effect only once. To indicate that a signal is to be
queued, set theSA SIGINFOflag in thesa flags member of thestruct
sigaction structure when passing it tosigaction().

4 Signals can also carry data. As withkill(), sigqueue() can be used to set a signal
on a process. Unlikekill(), sigqueue() has a value parameter. This is data that
will be passed to your signal handler. To access that data, your handler function
will now have a parameter of typesiginfo t, which has a member called
si value. This will contain the value passed tosigqueue().

Because of the different handler parameters, you must register your handler
usingsigaction(). In QNX 4, you’d put the address of your handler in the
sa handler member of thestruct sigaction structure. There is now a new
member calledsa sigaction. This is where you would put the address of a
handler that wanted to get data.

5 You can no longer set SIGKILL and SIGSTOP to be ignored, handled, or
blocked (masked).

6 There are issues with multithreaded processes (see the next section).

22 Chapter 3 � Programming Issues July 24, 2006



 2006, QNX Software Systems GmbH & Co. KG. Signal services

Thesignal(), sigaction(), kill(), sigaddset(), sigdelset(), sigemptyset(), sigfillset(),
sigismember(), siglongjmp(), sigpending(), sigprocmask(), sigsetjmp(), and
sigsuspend() functions are used just as in QNX 4. Thesa flags member of thestruct
sigaction structure that is passed tosigaction() now has some flags:
SA NOCLDSTOPandSA SIGINFO. SA NOCLDSTOPtells the system not to call the
handler if the child is stopped viaSIGSTOP(only relevant for theSIGCHLD signal).
SA SIGINFOstates that the signal is a queued signal.

There are also some new functions:

� sigblock()

� sigqueue()

� sigsetmask()

� sigtimedwait()

� sigunblock()

� sigwait()

� sigwaitinfo()

Signals and threads
Having threads affects how signals are handled. If, for instance, a given process
contains six threads, and a signal arrives for the process, which thread is the recipient?

Here are the rules for delivering a signal to a process that has many threads:

� Signal actions are maintained at the process level. If a certain thread decides to
ignore or catch a signal, this is remembered at a process level (i.e. not for any
specific thread).

� Signal masks, however, are maintained thread-by-thread. If a given thread decides
to mask all signals, only that thread is affected.

� The first time a particular signal is set on a process, the kernel looks for a thread
that has that signal unmasked. If all threads have the signal masked, then the signal
is made pending at the process level until a thread unmasks it, in which case that
thread will be affected. If more than one thread has the signal unmasked, then the
kernel picks a thread effectively at random. If only one thread has the signal
unmasked, then that thread is affected.

� Once a thread as been picked for a particular signal, from then on that particular
signal will always go to that thread.

Because of these rules, an easy approach is to dedicate one thread as the
“signal-handling thread” and mask signals in all threads except that one. This
signal-handling thread could then callsigwaitinfo() so as to not consume CPU time
while waiting for the signal.

July 24, 2006 Chapter 3 � Programming Issues 23



Shared memory  2006, QNX Software Systems GmbH & Co. KG.

Shared memory
The QNX Neutrino interface to shared memory usesshm open(), ftruncate(), mmap(),
and so on. It is almost the same as newer QNX 4 applications. One major difference is
thatftruncate() is used, where in QNX 4 you would have usedltrunc(). Another
difference is that the name of a shared memory object must begin with a slash (/)
character and contain only one slash to conform to POSIX and to appear in
/dev/shmem. If a name doesn’t begin with a slash, it will appear in the current
directory. Theshm ctl() function is also available for setting additional attributes.

If you’re used to calling theqnx segment*() functions, then they’ll need to be
converted toshm open(), ftruncate(), mmap() for the new OS. Theqnx segment*()
functions are no longer supported.

Semaphores
The function calls for semaphores — mainlysem init(), sem wait(), sem trywait(),
sem post(), andsem destroy() — are supported in QNX Neutrino with no changes
necessary. However, there’s the addition ofnamed semaphores.

In QNX 4, a semaphore is typically placed into a shared memory area so that two
processes can share it. The processes must agree in advance where the semaphore is in
memory (“there’s a semaphore at offset such-and-such in the shared memory named
XYZ”). With QNX Neutrino, and multiple threads, it might make sense for an
application to have a semaphore declared locally to a process.

Named semaphores
To make sharing semaphores between processes easier, QNX Neutrino supports
POSIX named semaphores. These are semaphores that can be accessed by a name
instead of having to be placed in shared memory. For named semaphores to work, you
must run themqueue process. Named semaphores are created and cleaned up using
sem open(), sem close(), andsem unlink().

Note thatsem wait() andsem post() with an unnamed semaphore use kernel calls to
do their work, whereas the same functions with a named semaphore work by sending
messages to the mqueue process and will be considerably slower.

POSIX Message Queues
The QNX Neutrino interface for POSIX message queues is almost the same as QNX
4. The following are the differences that you’ll need to be aware of:

� The name of the message queue server ismqueue instead ofMqueue.

� TheMQ flags are no longer supported.

� The event that you pass tomq notify() has changed in format. Obviously, you can
no longer give it a proxy. You can use a pulse instead.

24 Chapter 3 � Programming Issues July 24, 2006



 2006, QNX Software Systems GmbH & Co. KG. Timers

Timers
The timing functions have changed very little:

� qnx adj time() is nowClockAdjust().

� clock setres() andqnx ticksize() can be replaced withClockPeriod().

� Many people used the Pentiumrdtsc opcode for getting a cycle counter. A kernel
call is now provided that does the same thing —ClockCycles().

� timer create() no longer returns the timer ID. Instead, there’s a third parameter that
on successful return, contains the timer ID.

Timeouts
Timeouts can now be done using one of two new functions:TimerTimeout() or
timer timeout(). The only difference between the two is the types of the parameters.

Under QNX 4, a timeout could be achieved by having your blocking function be
unblocked by a signal after a certain amount of time elapsed. A problem arises if
you’re preempted for longer than the timeout. In that case, when your process gets to
run again, your signal handler would be called and then you’d enter the blocking
function (with no timeout in place, if you didn’t use a repeating timer).

Here’s a code snippet for a timeout on aMsgSend(). Note that we’re passing
timer timeout() the possible states forMsgSend() that we want to timeout.

event.sigev notify = SIGEV UNBLOCK;
timeout.tv sec = 10;
timeout.tv nsec = 0;
timer timeout (CLOCK REALTIME,

NTO TIMEOUT SEND | NTO TIMEOUT REPLY,
&event, &timeout, NULL );

MsgSend (coid, NULL, 0, NULL, 0);

Unfortunately, this still isn’t perfect, because the timing is relative to the call to
timer timeout(). However, if you’re preempted between thetimer timeout() and
MsgSend() for longer than the timeout period, the timeout is still waiting to take place,
even though it will be immediate in that case. You also don’t have to cancel the
timeout, since that will be done automatically before theMsgSend() returns.

Interrupts
The only significant change to writing QNX Neutrino interrupt handlers is that the
task has been simplified slightly.

You’ll find a chapter in theProgrammer’s Guide entitled “Writing an Interrupt
Handler.” There’s also a section in the “Writing a Resource Manager” chapter of that
book entitled “Handling interrupts” that shows how to do interrupt handlers from
within a resource manager.

July 24, 2006 Chapter 3 � Programming Issues 25



Hardware I/O  2006, QNX Software Systems GmbH & Co. KG.

Instead of callingqnx hint attach(), you would callInterruptAttach(). The last
parameter forqnx hint attach() was the data segment selector of your process. You no
longer need to provide this. The interrupt handler will simply be using the data
segment of the process that the handler is in.

In QNX 4, your handler was limited to waking up the process via a proxy. In QNX
Neutrino, your handler can return with an event that would contain either a pulse, a
signal, or an event of notify type SIGEVINTR. In the latter case, the attaching thread
would block onInterruptWait().

There’s also a new way of handling interrupts — withInterruptAttachEvent(). In this
case you would fill an event with a pulse, signal, or an event of notify type
SIGEV INTR. When the interrupt is generated, the kernel will mask the interrupt and
deliver the event, thereby waking up a thread. The thread would then do the required
work and then unmask the interrupt. This masking by the kernel is necessary for
handling level-sensitive interrupts.

As in QNX 4, you’re limited as to which functions you can call from within an
interrupt handler. When you look at a function in the library reference manual, one of
the areas under the “Classification” heading shows whether or not you can safely call
the function from an interrupt handler.

Note that just as in QNX 4 you needed I/O privileges to register an interrupt handler,
you still need it under QNX Neutrino. Under the new OS you actually need it for any
Interrupt*() function exceptInterruptWait().

To get I/O privileges under QNX 4, you would link with-T1. To get I/O privileges
under QNX Neutrino, you callThreadCtl( NTO TCTL IO, NULL). Note that you
must beroot in order to make this call toThreadCtl().

There are now functions that can be called from both a thread and the interrupt handler
for masking and unmasking interrupts:InterruptMask() andInterruptUnmask().

Hardware I/O
Port I/O

Port I/O on x86 is done using special machine instructions. On some other platforms,
such as PowerPC and MIPS, it’s done by mapping in and accessing memory. As such,
there’s one extra function you need to call that basically works out to aNOP for x86,
but something else on PowerPC and MIPS. That ismmap device io(). You pass it the
number of consecutive ports you want to access and the address of the first port. It
simply returns the address of the first port (the same one you gave it). From then on
you use instructions such asin8(), out8(), in16(). For addresses, pass them the value
returned bymmap device io() (the base port) plus some offset from this base port.

Note that just as in QNX 4 you needed I/O privileges to do port I/O, you still need I/O
privileges under QNX Neutrino.

26 Chapter 3 � Programming Issues July 24, 2006



 2006, QNX Software Systems GmbH & Co. KG. Hardware I/O

To get I/O privileges under QNX 4, you would link with-T1. To get I/O privileges
under QNX Neutrino, you callThreadCtl( NTO TCTL IO, NULL). Note that you
must beroot in order to make this call toThreadCtl().

The following is a short example of doing port I/O in QNX Neutrino:

#define SERIAL BASE PORT 0x2f8
...
#define R IE 1 /* interrupt enable */
...
#define R LS 5 /* line status */
...
#define NPORTS 8 /* no. of ports from base port */

uintptr t iobase; /* base of io memory (io ports) */

/* initialization, need to do only once */
ThreadCtl ( NTO TCTL IO, NULL);
iobase = mmap device io (NPORTS, SERIAL BASE PORT);

...

/* wait for the transmit holding register to be empty */
while ((in8(iobase + R LS) & 0x20) == 0)

;

/* Enable just the modem status as an interrupt source */
out8 (iobase + R IE, 0x08);

Memory-mapped I/O
When programming for QNX 4, you occasionally need to access physical memory.
Typically, this is done for memory-mapped devices (e.g. the PC video RAM). Under
QNX Neutrino, the situation is slightly different from QNX 4, but no more complex.
There are, moreover, several ways to map physical memory.

The simplest method is to call the QNX Neutrinommap device memory() function:

virtual address = mmap device memory( NULL, length,
PROT READ | PROT WRITE | PROT NOCACHE,
MAP SHARED | MAP PHYS, physical address );

The above call tommap device memory() just does the following:

virtual address = mmap( 0, length,
PROT READ | PROT WRITE | PROT NOCACHE,
MAP PHYS | MAP SHARED, NOFD, physical address );

Note that in neither case do you have to callshm open() as you do in QNX 4.

July 24, 2006 Chapter 3 � Programming Issues 27



Getting system information  2006, QNX Software Systems GmbH & Co. KG.

Memory for DMA
DMA requires that the OS allocate some memory for use by your driver and the DMA
controller. You need the virtual address of this memory and the controller needs the
physical address. This can all be done using the following code:

virtual address = mmap( 0, length,
PROT READ | PROT WRITE | PROT NOCACHE,
MAP PHYS | MAP ANON, NOFD, 0 );

mem offset( virtual address, NOFD, length, &physical address, 0);

Your driver code would use thevirtual address and would givephysical address to the
controller.

PCI functions
QNX 4 has a set of functions whose names begin withCA PCI *(). The analogous
functions for QNX Neutrino are calledpci *(). Note that for QNX Neutrino you must
also run a PCI server process (e.g.pci-bios). There are no special compile options
or stack issues. You also need to callpci attach() to connect to the PCI server before
making any otherpci *() calls.

Getting system information
Theqnx osinfo() function is no longer available. Instead, information can be gathered
from a number of places. Not all of the corresponding information that was available
from qnx osinfo() is either available or relevant. See the source for theqnx osinfo()
function in the migration library to see how to get information for fields for which
there is information available. Note that to get a QNX Neutrino-style nodename (the
nodename member of thestruct osinfo structure), you can callnetmgr ndtostr().

Getting process information
Under QNX 4, this was done by repeated calls toqnx psinfo(). As a resource manager
in QNX Neutrino, the process manager makes visible the proc filesystem (orprocfs).
If you have a look at the contents of/proc you’ll see some numbers. These numbers
are the process IDs of the processes that are currently executing. To get information on
them, you open them and then makedevctl() calls to the resulting file descriptor. See
the source for theqnx psinfo() function in the migration library to see how to do this
for a specific process or to walk through all processes. Keep in mind that where under
QNX 4 some information would be process-related (e.g. state, blocked on) this
information is now thread-related.

The term () Functions
The QNX 4 functions such asterm delete char(), which originated with QNX 2.1, are
not supported under QNX Neutrino.

28 Chapter 3 � Programming Issues July 24, 2006



 2006, QNX Software Systems GmbH & Co. KG. The term () Functions

A program using these would need to be reimplemented to use something like curses.
Also, the Watcom text calls such asgettextcursor(), and the graphics calls like
pg initchart(), are not supported. Basically, anything in the Watcom Graphics Library

Reference is not available in QNX Neutrino.

July 24, 2006 Chapter 3 � Programming Issues 29





Chapter 4

Migration Methodology

In this chapter. . .
A suggested approach 33
Get to know QNX Neutrino 33
Install the OS 33
Move your environment 33
Move your utilities 34
Plan! 34
Moving a program 34

July 24, 2006 Chapter 4 � Migration Methodology 31





 2006, QNX Software Systems GmbH & Co. KG. A suggested approach

A suggested approach
This section is intended to discuss one way that you might approach the migration of
your applications from QNX 4 to QNX Neutrino. It certainly isn’t the only way, and
probably not the best way for every migration situation. However, it does offer a
starting point for your planning and covers a number of common situations.

Get to know QNX Neutrino
Since you’re moving to a new environment, your first step should be to gain some
experience with the capabilities of the QNX Neutrino OS. Although this guide points
out most of the items you’ll have to look after during the migration, there’s no
substitute for getting your feet wet and finding out exactly how things really work.

The next few sections indicate one way you can build up this experience. If you don’t
take time to become familiar with the new OS before starting a serious migration
project, you’ll probably expend much more effort than necessary and have a number
of false starts.

Install the OS
The first step is obviously to install your development system. As specified in the
“Compiler & tools” section of the Development Environment chapter, your choice of
hosts are:

� QNX Neutrino

� MS-Windows

� Solaris

Your migration task will be a lot easier if you can access your target system over the
network using NFS or CIFS. This allows you to:

� produce a new executable on your host

� switch over to your target

� run the executable.

Move your environment
The first thing you should do is move your environment. Most of you will have
customized the standard QNX environment in many ways with shell scripts and utility
programs. Moving this material to QNX Neutrino will give you:

� an initial familiarity with the QNX Neutrino utilities. Many of these will be the
same, but some may differ.

� a stable reference point to work from during the migration, one that you are
familiar with and feel comfortable with.

July 24, 2006 Chapter 4 � Migration Methodology 33



Move your utilities  2006, QNX Software Systems GmbH & Co. KG.

Move your utilities
This is where you can start to get a feel for what problems you’ll face during the
migration of your major applications. Moving your utilities will not only give you a
good feel for migration problems, but will also ensure that your standard tools are
available to you when the serious work starts.

The section “Moving a program” provides some initial suggestions on how to deal
with individual programs.

Keep records on the effort required to migrate each utility. This will give you an
estimating base when you come to plan the migration of your major applications.

☞

Plan!
Good planning is the key to a successful migration. The following points provide a
starting point for your planning efforts.

� Make an inventory of the third-party software needed for your applications and
verify when that software (or equivalent) will be available under QNX Neutrino.

� Establish which applications will migrate to the new OS. It may be that some
applications are due for major rewrite and/or upgrade and it may make sense to
start with a new QNX Neutrino-based design in some of these cases.

� Establish the order in which applications will migrate. If there are inter-application
dependencies, identify them and decide how to deal with them, bearing in mind
that applications can communicate between QNX 4 and QNX Neutrino either by
moving data from one environment to the other or by IPC over serial links or
TCP/IP (but not through native QNX message passing).

� You should develop good estimates of the time required to migrate each
application. If you have already converted your utility programs, you’ll have a
yardstick to help in your estimation of the migration effort.

Moving a program
The following steps will be needed for each program.

Analysis
You can use themig4nto utility supplied with the migration kit to identify the major
areas in each program that need attention. This utility identifies functions in your
source programs that may require attention and provides succinct suggestions as to a
course of action in each case. This utility is fully described in the next chapter.

34 Chapter 4 � Migration Methodology July 24, 2006



 2006, QNX Software Systems GmbH & Co. KG. Moving a program

Architectural issues
First you must determine whether, through use of obsolete QNX functions or for other
reasons, there are any architectural reasons why the program won’t migrate as is.
Perhaps the program performs a function that’s unique to QNX 4 and isn’t necessary
in QNX Neutrino. Or maybe a serious redesign is required because the program is too
tightly bound to QNX 4 facilities. Programs in this class should be rare, but they do
have to be identified and strategies for dealing with them must be developed.

Converting header files
This is largely a mechanical job, but it needs to be done for each program. Many
header filenames and contents have changed.

Converting pathnames
If you have hard-coded pathnames in you programs, they may need to be converted.
This will be the case with nodename syntax. In QNX 4 a node was denoted using
//nid wherenid was the network identifier. Nodes of a QNX Neutrino network are
different.

Converting functions, etc.
The last step is to convert your program to use QNX Neutrino functions, manifests,
and data structures. The output from themig4nto utility will be very helpful at this
stage.

July 24, 2006 Chapter 4 � Migration Methodology 35





Chapter 5

The mig4nto Utility

In this chapter. . .
mig4nto 39

July 24, 2006 Chapter 5 � The mig4nto Utility 37





 2006, QNX Software Systems GmbH & Co. KG. mig4nto

mig4nto
Identify items in QNX 4 programs requiring attention (QNX)

Syntax:

mig4nto [-qsr] [-o output directory] [file...]

Options:

-q Be quiet; don’t display progress information.

-s Be strict; allow for only those functions that are ANSI/POSIX-compatible.
This option reports on all functions covered by the migration library. If you
don’t specify this option, functions covered by the migration library aren’t
identified.

-r Produce report only; don’t produce a copy of marked-up source.

-o output directory

The directory where you want annotated source files to be written.

file The pathname of a file containing a C source program or header file.

Description

Themig4nto utility helps you identify areas in your programs that will need attention
during the migration process. This utility copies source files, then inserts comments
above each source line that contains a function name or C preprocessor manifest name
requiring attention. These comments include brief suggestions as to a course of action.

The marked-up files are written to a directory other than the one from which their
corresponding source files were read. You specify this directory with the-o option.

For each file it examines, themig4nto utility also provides a summary report listing
the items in the file that require attention and the lines on which these items are found.
If you want to generate this summary report without also generating annotated
program files, then specify the-r option.

While processing files,mig4nto normally keeps you informed of its progress. But if
you want to run the utility in the background, you can specify the-q option to prevent
status messages from being displayed.

For each input file,mig4nto creates an output file in the directory specified by the-o

option. Each source line containing items that require attention is preceded by a
special comment line or lines.

July 24, 2006 Chapter 5 � The mig4nto Utility 39



mig4nto  2006, QNX Software Systems GmbH & Co. KG.

Examples:

Annotate all the C source files in the current directory, and place the output files in the
/nto/src directory.

mig4nto -o /nto/src *.c

Annotate all the C source files in the current directory, and place the output in the
/nto/src directory. Place the summary report in the report file.

mig4nto -o /nto/src -s *.c > report

Exit status:

0 No files needed attention.

1 One or more files contained items needing attention.

>1 An error occurred.

If a file can’t be opened for reading or writing, or if an I/O error occurs while reading
or writing a file, the output file is removed and processing is continued with the next
file. The final exit status will be greater than one.

☞

40 Chapter 5 � The mig4nto Utility July 24, 2006



Chapter 6

The Migration Library

In this chapter. . .
The migration process manager (mig4nto-procmgr) 43
The migration library functions 44

July 24, 2006 Chapter 6 � The Migration Library 41





 2006, QNX Software Systems GmbH & Co. KG. The migration process manager (mig4nto-procmgr)

The migration library is a set of functions that implement many of the QNX 4
functions that are no longer supported or are different in the new OS.

There’s also a migration process manager (mig4nto-procmgr) that must be run for
some of the library functions to work.

In the list of migration functions given below, functions that require
mig4nto-procmgr are indicated as such. If a process does call functions that require
mig4nto-procmgr, then you must call themig4nto init() function at the very
beginning of your program. See the description formig4nto-procmgr below for
more on this.

☞

The migration process manager (mig4nto-procmgr)
Provides numerous features of the migration library (QNX)

Syntax:

mig4nto-procmgr [-ntv]

Options:

-n QNX 4-style network ID (nid) (default: 1)

-t Number of threads for relaying proxy messages (default: 4)

-v Be verbose. Use more v’s for more information.

Description

The migration process manager provides services such as name registration and name
location, proxy registration and sending, andnid storage. Basically, it provides things
thatProc32 does under QNX 4 but thatprocnto (the QNX Neutrino equivalent)
doesn’t provide (or doesn’t provide in the same way).

Triggering of proxies using this library can be much slower than in QNX 4. If a
process triggers a proxy and that proxy isn’t attached to the triggering process, then
the triggerer sends a message tomig4nto-procmgr. Themig4nto-procmgr
process has a number of threads dedicated to receiving these trigger messages (see the
-t option above). When one of these threads receives the trigger message, it replies
back immediately. It then sends a message to the process that the proxy is attached to.
The reason for having theTrigger() function send tomig4nto-procmgr is so that it
will know if the proxy is a valid one.

Many of the functions in the migration library require that themig4nto-procmgr

process be running. If using any of these functions, you must also callmig4nto init()
at the very beginning of you program, preferably the first thing inmain(). One of the
reasons for this is thatmig4nto init() creates a channel by callingChannelCreate().
The channel ID returnedmust be1 — calling this function very early ensures this.

July 24, 2006 Chapter 6 � The Migration Library 43



The migration library functions  2006, QNX Software Systems GmbH & Co. KG.

Migration functions that require mig4nto-procmgr
The following functions needmig4nto-procmgr to be running:

� dev arm()

� getnid()

� mig4nto init()

� qnx name attach()

� qnx name detach()

� qnx name locate()

� qnx name query()

� qnx proxy attach()

� qnx proxy detach()

� Readmsg()

� Readmsgmx()

� Receive()

� Receivemx()

� Reply()

� Replymx()

� Send()

� Sendmx()

� Trigger()

� Writemsg()

� Writemsgmx()

The migration library functions
The following functions are in the migration library (libmig4nto.a). The only
include needed is<mig4nto.h>. Note that full source is available.

Rather than repeat the contents of the QNX 4 documentation, only the differences
from QNX 4 implementation are given below. Note that no attempt was made to keep
theerrno failure values the same.

44 Chapter 6 � The Migration Library July 24, 2006



 2006, QNX Software Systems GmbH & Co. KG. The migration library functions

block read()

The block number has been changed from 1-based to 0-based.

block write()

The block number has been changed from 1-based to 0-based. The QNX 4
block write(), when applied to a regular file, would never grow it; the QNX Neutrino
writeblock() function (which this migration function uses) may cause a regular file to
be extended if writing occurs beyond the end-of-file.

dev arm()

Only the following are supported:

� DEV EVENT INPUT

� DEV EVENT OUTPUT

� DEV EVENT EXRDY

� DEV EVENT DRAIN

Requiresmig4nto-procmgr to be running.

dev info()

If the call is successful, the following members of the info structure are filled:

int unit Unit number of this device (e.g./dev/con2 would have a unit of 2).

nid t nid The network ID where this device exists. Note that this will contain a
QNX Neutrino node descriptor (nd), not a QNX 4 network ID (nid).

pid t driver pid

Process ID of the driver that controls this device.

char driver type[16]

A symbolic name describing the device nature.

char tty name[MAX TTY NAME]

A complete pathname that may be used to open his device.

dev insert chars()

Same as QNX 4 implementation.

dev ischars()

Same as QNX 4 implementation.

July 24, 2006 Chapter 6 � The Migration Library 45



The migration library functions  2006, QNX Software Systems GmbH & Co. KG.

dev mode()

DEV OSFLOWis not supported.

dev read()

The proxy and armed parameters are not supported.

dev readex()

This gets the out-of-band data fromdevc-* drivers (uses the
DCMD CHR GETOBAND of devctl()). The return value is the number of bytes read,
but isnot obtained from the driver. Instead, this function estimates the number of
bytes by filling the buffer with zeros before doing thedevctl() and then after the
devctl() has returned, counting the number of leading non-zero bytes.

dev size()

Same as QNX 4 implementation.

dev state()

This only lets you query the current state. Thebits and mask parameters are
ignored.

The following can be returned:

DEV EVENT INPUT

Input is available from the device.

DEV EVENT DRAIN

The output has drained on this device.

DEV EVENT EXRDY

An exception or out-of-bound character is available to be read withdev readex()

DEV EVENT OUTPUT

There’s room in the output buffer to transmit N chars (by default, N is 1).

disk get entry()

This usesdevctl() with theDCMD CAM DEVINFO command. See
<sys/dcmd cam.h> and<sys/cam device.h>.

You may want to use the directdevctl()s that build this, because they’re more useful
and have better field definitions (e.g. “cylinders” in QNX Neutrino is 32-bit, but only
16 in QNX 4; large EIDE disks have already wrapped this due to geometry
translation).

46 Chapter 6 � The Migration Library July 24, 2006



 2006, QNX Software Systems GmbH & Co. KG. The migration library functions

disk space()

It may be better to switch directly tostatvfs(), which has additional fields that may be
useful (such as the block size, the mount flags, etc).

fsys get mount dev()

Same as QNX 4 implementation.

fsys get mount pt()

Same as QNX 4 implementation.

getnid()

This returns the network id passed tomig4nto-procmgr through the-n option. The
mig4nto-procmgr process defaults this to 1.

Requiresmig4nto-procmgr to be running.

mig4nto init()

This must be called before most library functions are called (see the list under the
mig4nto-procmgr section above). It should be called as the first or one of the first
things inmain(). The reason is that it creates a channel for receiving messages on, and
the channel ID must be 1. This will be true only for the first call toChannelCreate().
Calling this early ensures that this will be the case.

Requiresmig4nto-procmgr to be running.

qnx hint attach()

QNX Neutrino interrupt handlers can return with an event that contains a pulse. QNX
4 interrupt handlers can return a proxy. In order for this to still work, this function
installs its own QNX Neutrino interrupt handler that will call the given interrupt
handler. So when the interrupt is generated, thishidden handler is called. The hidden
handler calls the given handler. If the given handler returns with a proxy (non-zero
value), then the hidden handler returns a pulse event. The proxy value is stuffed into
the event.

TheReceive*() migration functions watch for this pulse event. When they receive it,
they pull the proxy value from the pulse message and return with it.

qnx hint detach()

Same as QNX 4 implementation.

qnx name attach()

The only valid values for nid are 0 and the local nid (gotten frommig4nto-procmgr).

Requiresmig4nto-procmgr to be running.

July 24, 2006 Chapter 6 � The Migration Library 47



The migration library functions  2006, QNX Software Systems GmbH & Co. KG.

qnx name detach()

The only valid values for nid are 0 and the local nid (gotten frommig4nto-procmgr).

Requiresmig4nto-procmgr to be running.

qnx name locate()

The only valid values for nid are 0 and the local nid (gotten frommig4nto-procmgr).

Requiresmig4nto-procmgr to be running.

qnx name query()

The only valid values for procpid are 0 and PROCPID.

Requiresmig4nto-procmgr to be running.

qnx osinfo()

The fields in theosdata structure are set to the following values:

� tick size — the current ticksize or resolution of the realtime clock in microseconds.

� version — Neutrino 2.0, for example, reports a version of 200, where QNX 4.25
reported 425.

� sflags — a bitfield containing:

- PSFPROTECTED — running in protected mode.

- PSFNDP INSTALLED — FPU hardware is installed.

- PSFEMULATOR INSTALLED — An FPU emulator is installed

- PSFPCI BIOS — A PCI BIOS is present

- PSF32BIT KERNEL — 32-bit kernel is being used.

� nodename QNX 4 nid retrieved from themig4nto Name Resource Manager.

� cpu — processor type (486,586,...)

� machine — name of this machine on the network.

� totpmem — total physical memory.

� freepmem — free physical memory.

� totmemk — total memory in Kb, up to USHORTMAX (65535).

� freememk — free memory in Kb, up to USHORTMAX (65535).

� cpu features — contains CPU speed in MHz.

The remaining fields are set to MIG4NTOUNSUPP.

48 Chapter 6 � The Migration Library July 24, 2006



 2006, QNX Software Systems GmbH & Co. KG. The migration library functions

qnx proxy attach()

Requiresmig4nto-procmgr to be running.

qnx proxy detach()

Requiresmig4nto-procmgr to be running.

qnx psinfo()

Some of the information associated with a process in QNX 4 is associated with a
thread in QNX Neutrino (e.g. state, blockedon, ...). The assumption here is that if
you’re migrating a QNX 4 process to QNX Neutrino, you’ll have only one thread, so
this information is taken from the thread with ID 1 (themain() thread).

The following fields are populated:

� pid — the process ID

� blocked on — what process is blocked on (pid).

� pid group — process group

� ruid — real user ID

� rgid — real group ID

� euid — effective user ID

� egid — effective group ID

� umask — process umask

� sid — session ID

� signal ignore — process signal ignore mask

� signal mask — thread signal block mask

� state — thread state

� priority — process priority

� max priority — max priority

� sched algorithm — scheduling policy (round-robin or FIFO)

� un.proc.name — the name of the program image. This name is limited to 100 bytes
including the NULL.

� un.proc.father — parent process

� un.proc.son — child process

� un.proc.brother — sibling process

July 24, 2006 Chapter 6 � The Migration Library 49



The migration library functions  2006, QNX Software Systems GmbH & Co. KG.

� un.proc.times — all times set to zero

All other psdata structure elements are set to MIG4NTOUNSUPP.

QNX Neutrino doesn’t support time-accounting information, so the members of the
tms structures are always set to 0.

Theqnx psinfo() function can currently examine processes only, as there are no/proc

entries for virtual circuits and pulses.

The only valid values forproc pid are 0 and PROCPID.

Thesegdata parameter is ignored.

qnx spawn()

Here are some notes regarding the parameters:

msgbuf This is ignored.

sched algo QNX 4 and QNX Neutrino use the same names for scheduling
algorithms, but their values are different. Be very careful if you’re
not just recompiling with the macros from the QNX Neutrino header
files.

Note also that in the new OS, SCHEDOTHER is SCHEDRR. QNX
Neutrino doesn’t have QNX 4’s adaptive scheduling algorithm. As
such, there’s no equivalent of SCHEDFAIR.

flags The SPAWN XCACHE flag is not supported.

iov If this is given, then unlike QNX 4, the FDs passed within it will be
the only ones inherited by the child. This is true even for the IOVs
that are -1.

ctfd This returns -1 and sets errno to EINVAL if thectfd parameter is
anything other than -1.

Readmsg()

Requiresmig4nto-procmgr to be running.

Readmsgmx()

Requiresmig4nto-procmgr to be running.

Receive()

Requiresmig4nto-procmgr to be running.

50 Chapter 6 � The Migration Library July 24, 2006



 2006, QNX Software Systems GmbH & Co. KG. The migration library functions

Receivemx()

Requiresmig4nto-procmgr to be running.

Reply()

Requiresmig4nto-procmgr to be running.

Replymx()

Requiresmig4nto-procmgr to be running.

Send()

This function creates a connection for each process that is sent to. Once the message
has been sent, the connection isnot detached. Instead, the connection ID is cached in
case further messages are sent to the same process.

Requiresmig4nto-procmgr to be running.

Sendmx()

This function creates a connection for each process that is sent to. Once the message
has been sent, the connection isnot detached. Instead, the connection ID is cached in
case further messages are sent to the same process.

Requiresmig4nto-procmgr to be running.

Trigger()

If triggering a proxy that is attached to the calling process, then this uses a pulse.

If triggering a proxy that is attached to another process, then this sends a message to
mig4nto-procmgr, which has a set of dedicated threads for receiving this message.
When one of those threads receives the message, it replies immediately and then sends
a message to the process that the proxy is attached to.

The reason for going throughmig4nto-procmgr is that theTrigger() function will at
least know whether or not the proxy is a valid one.

Requiresmig4nto-procmgr to be running.

Writemsg()

Requiresmig4nto-procmgr to be running.

Writemsgmx()

Requiresmig4nto-procmgr to be running.

Yield()

Same as QNX 4 implementation.

July 24, 2006 Chapter 6 � The Migration Library 51





Appendix A

QNX 4 Functions & QNX Neutrino
Equivalents

July 24, 2006 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents 53





 2006, QNX Software Systems GmbH & Co. KG.

This appendix lists the QNX 4 C library functions along with their QNX Neutrino
equivalents. For functions that have no direct replacement, you’ll find either a cover
function or a suggested workaround.

abstimer()

QNX Neutrino equivalent:

timer settime( CLOCK REALTIME, TIMER ABSTIME, ... )

In migration library?

No

asctime()

QNX Neutrino equivalent:

extern char *asctime r( const struct tm * timeptr, char

* buff );

In migration library?

No

This call is a drop-in replacement.

bcalloc()

QNX Neutrino equivalent:

calloc()

In migration library?

No

QNX Neutrino doesn’t support segment-based functions.

beginthread()

QNX Neutrino equivalent:

pthread create()

In migration library?

No

A thread in QNX 4 is really just a separate process that shares the data segment of its
parent, whereas a thread in QNX Neutrino is really withinthe same process as its
parent and shares a great deal more.

☞

July 24, 2006 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents 55



 2006, QNX Software Systems GmbH & Co. KG.

bexpand()

QNX Neutrino equivalent:

realloc()

In migration library?

No

QNX Neutrino doesn’t support segment-based functions. You can userealloc() in
place of this, but beware thatrealloc() will move your memory block to a new address
if needed, andbexpand() will fail rather than move your memory block to a new
address.

☞

bfree()

QNX Neutrino equivalent:

free()

In migration library?

No

QNX Neutrino doesn’t support segment-based functions.

bfreeseg()

QNX Neutrino equivalent:

free()

In migration library?

No

QNX Neutrino doesn’t support segment-based functions.

bgetcmd()

QNX Neutrino equivalent:

Parse the argument vector passed tomain() instead.

In migration library?

No

QNX Neutrino doesn’t support segment-based functions.

56 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents July 24, 2006



 2006, QNX Software Systems GmbH & Co. KG.

bheapchk()

QNX Neutrino equivalent:

mallopt() with MALLOC VERIFY

In migration library?

No

See themalloc g library described in the “Heap Analysis” chapter inProgrammer’s
Guide.

bheapmin()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

bheapseg()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

bheapset()

QNX Neutrino equivalent:

mallopt() with MALLOC VERIFY

In migration library?

No

See themalloc g library described in the “Heap Analysis” chapter inProgrammer’s
Guide.

bheapshrink()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

July 24, 2006 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents 57



 2006, QNX Software Systems GmbH & Co. KG.

bheapwalk()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

See themalloc g library described in the “Heap Analysis” chapter inProgrammer’s
Guide.

block read()

QNX Neutrino equivalent:

readblock() as follows:

readblock(filedes, 512, block - 1, nblocks, buf)

In migration library?

Yes

The block number has been changed from 1-based to 0-based.☞

block write()

QNX Neutrino equivalent:

writeblock() as follows:

writeblock(filedes, 512, block - 1, nblocks, buf)

In migration library?

Yes

The block number has been changed from 1-based to 0-based. When applied to a
regular file, the QNX 4block write() would never grow the file; thewriteblock()
function may cause a regular file to be extended if writing occurs beyond the
end-of-file. Note that the cover function in the migration library callswriteblock().

☞

58 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents July 24, 2006



 2006, QNX Software Systems GmbH & Co. KG.

bmalloc()

QNX Neutrino equivalent:

malloc()

In migration library?

No

QNX Neutrino doesn’t support segment-based functions.

bmsize()

QNX Neutrino equivalent:

msize(), musize(), andDH ULEN()

In migration library?

No

See themalloc g library described in the “Heap Analysis” chapter inProgrammer’s
Guide.

bprintf()

QNX Neutrino equivalent:

snprintf()

In migration library?

No

brealloc()

QNX Neutrino equivalent:

realloc()

In migration library?

No

QNX Neutrino doesn’t support segment-based functions.

CA PCI * functions

The following functions aren’t in the migration library:

QNX 4 function: QNX Neutrino equivalent:

CA PCI BIOS Present() pci present()

continued. . .

July 24, 2006 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents 59



 2006, QNX Software Systems GmbH & Co. KG.

QNX 4 function: QNX Neutrino equivalent:

CA PCI Find Class() pci find class()

CA PCI Find Device() pci find device()

CA PCI Generate Special Cycle() No longer supported

CA PCI Read Config Byte() pci read config8()

CA PCI Read Config DWord() pci read config32()

CA PCI Read Config Word() pci read config16()

CA PCI Write Config Byte() pci write config8()

CA PCI Write Config DWord() pci write config32()

CA PCI Write Config Word() pci write config16()

cgets()

QNX Neutrino equivalent:

Set/dev/tty as standard output and callgets().

In migration library?

No

clear87()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

clock setres()

QNX Neutrino equivalent:

ClockPeriod()

In migration library?

No

console active()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

60 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents July 24, 2006



 2006, QNX Software Systems GmbH & Co. KG.

console arm()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

console close()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

console ctrl()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

console info()

QNX Neutrino equivalent:

tcgetsize() for the number of rows and columns — the remainder is no longer
supported.

In migration library?

No

console open()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

console protocol()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

July 24, 2006 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents 61



 2006, QNX Software Systems GmbH & Co. KG.

console read()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

console size()

QNX Neutrino equivalent:

tcgetsize() for the number of rows and columns — you can’t set the size.

In migration library?

No

console state()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

console write()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

control87()

QNX Neutrino equivalent:

See<fpstatus.h>

In migration library?

No

cprintf()

QNX Neutrino equivalent:

Set/dev/tty as standard output and callprintf().

In migration library?

No

62 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents July 24, 2006



 2006, QNX Software Systems GmbH & Co. KG.

cputs()

QNX Neutrino equivalent:

Do fputs() to /dev/tty instead.

In migration library?

No

Creceive()

QNX Neutrino equivalent:

MsgReceive() preceded immediately by:

event.sigev notify = SIGEV UNBLOCK;
TimerTimeout(CLOCK REALTIME, NTO TIMEOUT RECEIVE,

&event, NULL, NULL );

In migration library?

No

Creceivemx()

QNX Neutrino equivalent:

MsgReceivev() preceded immediately by:

event.sigev notify = SIGEV UNBLOCK;
TimerTimeout(CLOCK REALTIME, NTO TIMEOUT RECEIVE,

&event, NULL, NULL );

In migration library?

No

crypt()

QNX Neutrino equivalent:

crypt()

In migration library?

No

The QNX Neutrino version is Unix-compatible. For the QNX 4 version,qnx crypt().

July 24, 2006 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents 63



 2006, QNX Software Systems GmbH & Co. KG.

cscanf()

QNX Neutrino equivalent:

Set/dev/tty as standard input and callscanf().

In migration library?

No

ctime()

QNX Neutrino equivalent:

ctime r()

In migration library?

No

cuserid()

QNX Neutrino equivalent:

geteuid() for the user ID number followed bygetpwent() to find the user name.

In migration library?

No

dev arm()

QNX Neutrino equivalent:

Seeionotify().

In migration library?

Yes — coversDEV EVENT INPUT, DEV EVENT OUTPUT,
DEV EVENT EXRDY, and DEV EVENT DRAIN.

Not all event types are supported. ForDEV EVENT HANGUP, consider setting up a
controlling terminal and handleSIGHUP. For DEV EVENT WINCH, consider using
SIGWINCH.

dev fdinfo()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

You can’t get all the information, but you can get bits and pieces elsewhere.

64 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents July 24, 2006



 2006, QNX Software Systems GmbH & Co. KG.

dev info()

QNX Neutrino equivalent:

No longer supported.

In migration library?

Yes

You can’t get all the information, but you can get bits and pieces elsewhere.

dev insert chars()

QNX Neutrino equivalent:

tcinject()

In migration library?

Yes

dev ischars()

QNX Neutrino equivalent:

tcischars()

In migration library?

Yes

dev mode()

QNX Neutrino equivalent:

tcgetattr() andtcsetattr()

In migration library?

Yes

dev osize()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

dev read()

QNX Neutrino equivalent:

readcond() andionotify()

In migration library?

Yes

July 24, 2006 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents 65



 2006, QNX Software Systems GmbH & Co. KG.

You can implement some of this by usingreadcond() andionotify(). Thereadcond()
can handle the cases whereproxy == 0. Theionotify() in conjunction with pulses
(signals are even easier) can handle the cases whereproxy != 0 andmin, time, and
timeout are all0.

For equivalent functionality tomin, time, andtimeout combined with a pulse or signal
for notification, create a separate thread that requests pulse notification using
ionotify(). Set up another pulse notification for the timeout. Then go into a
MsgReceive() loop with with aTimerTimeout() call before theMsgReceive() call for
the interbyte time. Deliver a pulse or set a signal when themin, time or timeout
condition is satisfied.

The cover function doesn’t handle the proxy and armed parameters.☞

dev readex()

QNX Neutrino equivalent:

devctl() with DCMD CHR GETOBAND

In migration library?

Yes

You can usedevctl() with DCMD CHR GETOBAND in place of this for getting
out-of-band data from resource managers that support it. Currently, onlydevc-*

resource managers support this.

dev size()

QNX Neutrino equivalent:

tcgetsize() andtcsetsize()

In migration library?

Yes

dev state()

QNX Neutrino equivalent:

N/A

In migration library?

Yes

There’s no equivalent way of directly setting these states:

� For DEV EVENT INPUT, usedevctl() with DCMD CHR ISCHARS.

� For DEV EVENT DRAIN, usedevctl() with DCMD CHR OSCHARS.

66 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents July 24, 2006



 2006, QNX Software Systems GmbH & Co. KG.

� For DEV EVENT OUTPUT, there’s currently no way to determine this (because
there’s no way to determine the size of the output buffer).

� For DEV EVENT EXRDY, usedevctl() with DCMD CHR GETOBAND — note that
doing so will clear the out-of-band data in the case ofdevc-* drivers.

disable()

QNX Neutrino equivalent:

InterruptLock()

In migration library?

No

disk get entry()

QNX Neutrino equivalent:

devctl() with theDCMD CAM DEVINFO command.

In migration library?

Yes, but see below.

See<sys/dcmd cam.h> and<sys/cam device.h>. Although a cover function is
provided in the migration library, you might want to use the directdevctl()s that build
this — they’re more useful and have better field definitions (e.g. “cylinders” in QNX
Neutrino is 32-bit, but only 16-bit in QNX 4, and large EIDE disks have already
wrapped this due to geometry translation).

disk space()

QNX Neutrino equivalent:

statvfs()

In migration library?

Yes, but see below.

Although a cover function is provided in the migration library, you might want to
switch directly tostatvfs() because it has additional fields that may be useful (block
size, mount flags, etc.).

ecvt()

QNX Neutrino equivalent:

sprintf()

In migration library?

No

July 24, 2006 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents 67



 2006, QNX Software Systems GmbH & Co. KG.

ecvt()

QNX Neutrino equivalent:

sprintf()

In migration library?

No

enable()

QNX Neutrino equivalent:

InterruptUnlock()

In migration library?

No

endthread()

QNX Neutrino equivalent:

pthread exit()

In migration library?

No

expand()

QNX Neutrino equivalent:

realloc()

In migration library?

No

You can userealloc() in place of this, but beware thatrealloc() will move your
memory block to a new address if needed, andexpand() will fail rather than move
your memory block to a new address.

☞

fcalloc()

QNX Neutrino equivalent:

calloc()

In migration library?

No

68 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents July 24, 2006



 2006, QNX Software Systems GmbH & Co. KG.

fcvt()

QNX Neutrino equivalent:

sprintf()

In migration library?

No

fcvt()

QNX Neutrino equivalent:

sprintf()

In migration library?

No

fexpand()

QNX Neutrino equivalent:

realloc()

In migration library?

No

You can userealloc() in place of this, but beware thatrealloc() will move your
memory block to a new address if needed, andexpand() will fail rather than move
your memory block to a new address.

ffree()

QNX Neutrino equivalent:

free()

In migration library?

No

fheapchk()

QNX Neutrino equivalent:

mallopt() with MALLOC VERIFY

In migration library?

No

See themalloc g library described in the “Heap Analysis” chapter inProgrammer’s
Guide.

July 24, 2006 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents 69



 2006, QNX Software Systems GmbH & Co. KG.

fheapgrow()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

fheapmin()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

fheapset()

QNX Neutrino equivalent:

mallopt() with MALLOC VERIFY

In migration library?

No

See themalloc g library described in the “Heap Analysis” chapter inProgrammer’s
Guide.

fheapshrink()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

fheapwalk()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

See themalloc g library described in the “Heap Analysis” chapter inProgrammer’s
Guide.

70 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents July 24, 2006



 2006, QNX Software Systems GmbH & Co. KG.

filelength()

QNX Neutrino equivalent:

fstat()

In migration library?

No

You can do this with:

fstat(fd, &st);

followed by:

return(S ISBLK(st.st mode) ? st.st nblocks *
st.st blocksize : st.st size);

A little more may be needed for 64-bit support.

fmalloc()

QNX Neutrino equivalent:

malloc()

In migration library?

No

fmemccpy()

QNX Neutrino equivalent:

memccpy()

In migration library?

No

fmemchr()

QNX Neutrino equivalent:

memchr()

In migration library?

No

fmemcmp()

QNX Neutrino equivalent:

memcmp()

In migration library?

No

July 24, 2006 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents 71



 2006, QNX Software Systems GmbH & Co. KG.

fmemcpy()

QNX Neutrino equivalent:

memcpy()

In migration library?

No

fmemicmp()

QNX Neutrino equivalent:

memicmp()

In migration library?

No

fmemmove()

QNX Neutrino equivalent:

memmove()

In migration library?

No

fmemset()

QNX Neutrino equivalent:

memset()

In migration library?

No

fmsize()

QNX Neutrino equivalent:

msize(), musize(), andDH ULEN()

In migration library?

No

See themalloc g library described in the “Heap Analysis” chapter inProgrammer’s
Guide.

FP OFF()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

72 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents July 24, 2006



 2006, QNX Software Systems GmbH & Co. KG.

fpreset()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

frealloc()

QNX Neutrino equivalent:

realloc()

In migration library?

No

freect()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

FP SEG()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

fsopen()

QNX Neutrino equivalent:

sopen(), fdopen()

In migration library?

No

Usesopen(), which returns a file descriptor, then usefdopen() to associate a stream
with it.

fstr* functions

The following functions aren’t in the migration library:

July 24, 2006 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents 73



 2006, QNX Software Systems GmbH & Co. KG.

QNX 4 function: QNX Neutrino equivalent:

fstrcat() strcat()

fstrchr() strchr()

fstrcmp() strcmp()

fstrcpy() strcpy()

fstrcspn() strcspn()

fstrdup() strdup()

fstricmp() strcmp()

fstrlen() strlen()

fstrlwr() strlwr()

fstrncat() strncat()

fstrncmp() strncmp()

fstrncpy() strncpy()

fstrnicmp() strnicmp()

fstrnset() strnset()

fstrpbrk() strpbrk()

fstrrchr() strrchr()

fstrrev() strrev()

fstrset() strset()

fstrspn() strspn()

fstrstr() strstr()

fstrtok() strtok()

fstrupr() strupr()

fsys fdinfo()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

fsys fstat()

QNX Neutrino equivalent:

No longer supported.

74 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents July 24, 2006



 2006, QNX Software Systems GmbH & Co. KG.

In migration library?

No

The filesystem doesn’t provide the information because the QNX Neutrinoio-blk

doesn’t give preferential treatment to any particular disk format.

fsys get mount dev()

QNX Neutrino equivalent:

devctl()

In migration library?

Yes

You can use thedevctl() commandDCMD FSYS MOUNTED ON to get this
information, but it must be sent as part of a combine message. See the source for
fsys get mount dev() in the migration library for code for doing this.

fsys get mount pt()

QNX Neutrino equivalent:

devctl()

In migration library?

Yes

You can use thedevctl() commandDCMD FSYS MOUNTED BY to get this
information, but it must be sent as part of a combine message. See the source for
fsys get mount pt() in the migration library for code for doing this.

fsys stat()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

The filesystem doesn’t provide the information because the QNX Neutrinoio-blk

doesn’t give preferential treatment to any particular disk format.

gcvt()

QNX Neutrino equivalent:

Considersprintf()

In migration library?

No

July 24, 2006 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents 75



 2006, QNX Software Systems GmbH & Co. KG.

gcvt()

QNX Neutrino equivalent:

Considersprintf()

In migration library?

No

getch()

QNX Neutrino equivalent:

read() in raw mode.

In migration library?

No

getche()

QNX Neutrino equivalent:

getchar() or getc() combined withputchar() or putc().

In migration library?

No

getcmd()

QNX Neutrino equivalent:

Parse the argument vector passed tomain() instead.

In migration library?

No

getnid()

QNX Neutrino equivalent:

netmgr ndtostr()

In migration library?

Yes

Unlike QNX 4, QNX Neutrino doesn’t use node IDs (nids). Instead, nodes on a
network havenames. To get the name of the caller’s node, usenetmgr ndtostr() with
the nd parameter set toND LOCAL NODE.

The migration library has agetnid() function that returns whatever was passed to
mig4nto-procmgr via the-n option.

76 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents July 24, 2006



 2006, QNX Software Systems GmbH & Co. KG.

gettimer()

QNX Neutrino equivalent:

timer gettime()

In migration library?

No

getwd()

QNX Neutrino equivalent:

getcwd()

In migration library?

No

Thegetwd() function requires a preallocated buffer, whereasgetcwd() will allocate one
if it’s passed NULL for the buffer. Thegetcwd() function also has a size parameter.
For portability, usegetcwd() instead ofgetwd().

gmtime()

QNX Neutrino equivalent:

gmtime r()

In migration library?

No

halloc()

QNX Neutrino equivalent:

calloc()

In migration library?

No

heapchk()

QNX Neutrino equivalent:

mallopt() with MALLOC VERIFY

In migration library?

No

See themalloc g library described in the “Heap Analysis” chapter inProgrammer’s
Guide.

July 24, 2006 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents 77



 2006, QNX Software Systems GmbH & Co. KG.

heapenable()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

heapgrow()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

heapmin()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

heapset()

QNX Neutrino equivalent:

mallopt() with MALLOC VERIFY

In migration library?

No

See themalloc g library described in the “Heap Analysis” chapter inProgrammer’s
Guide.

heapshrink()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

heapwalk()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

78 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents July 24, 2006



 2006, QNX Software Systems GmbH & Co. KG.

See themalloc g library described in the “Heap Analysis” chapter inProgrammer’s
Guide.

hfree()

QNX Neutrino equivalent:

free()

In migration library?

No

ioctl()

QNX Neutrino equivalent:

devctl()

In migration library?

No

For thedcmds to use with QSS-supplied resource managers, see<sys/dcmd *.h>.

inp()

QNX Neutrino equivalent:

in8()

In migration library?

No

You should callmmap device io() before calling the port I/O functions.☞

inpd()

QNX Neutrino equivalent:

in32()

In migration library?

No

You should callmmap device io() before calling the port I/O functions.☞

inpw()

QNX Neutrino equivalent:

in16()

July 24, 2006 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents 79



 2006, QNX Software Systems GmbH & Co. KG.

In migration library?

No

You should callmmap device io() before calling the port I/O functions.☞

isascii()

QNX Neutrino equivalent:

isascii()

In migration library?

No

iscsym()

QNX Neutrino equivalent:

isalpha(), isdigit()

In migration library?

No

Replace with an expression usingisalpha(), isdigit() and testing for the underscore
character.

iscsymf()

QNX Neutrino equivalent:

isalpha()

In migration library?

No

Replace with an expression usingisalpha() and testing for the underscore character.

itoa()

QNX Neutrino equivalent:

itoa()

In migration library?

No

kbhit()

QNX Neutrino equivalent:

tcischars()

In migration library?

No

80 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents July 24, 2006



 2006, QNX Software Systems GmbH & Co. KG.

lfind()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

localtime()

QNX Neutrino equivalent:

localtime r()

In migration library?

No

lock()

QNX Neutrino equivalent:

fcntl() with F SETLK

In migration library?

No

locking()

QNX Neutrino equivalent:

tell() andfcntl() with F SETLK

In migration library?

No

locking()

QNX Neutrino equivalent:

tell() andfcntl() with F SETLK

In migration library?

No

log2()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

July 24, 2006 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents 81



 2006, QNX Software Systems GmbH & Co. KG.

lrotl()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

lrotr()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

lsearch()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

ltoa()

QNX Neutrino equivalent:

ltoa()

In migration library?

No

makepath()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

max()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

82 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents July 24, 2006



 2006, QNX Software Systems GmbH & Co. KG.

memavl()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

memicmp()

QNX Neutrino equivalent:

memicmp()

In migration library?

No

memmax()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

min()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

MK FP()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

mktimer()

QNX Neutrino equivalent:

timer create()

In migration library?

No

July 24, 2006 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents 83



 2006, QNX Software Systems GmbH & Co. KG.

mount()

QNX Neutrino equivalent:

mount()

In migration library?

No

This is supported, but its prototype has changed.☞

mouse close()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

mouse flush()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

mouse open()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

mouse param()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

mouse read()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

84 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents July 24, 2006



 2006, QNX Software Systems GmbH & Co. KG.

movedata()

QNX Neutrino equivalent:

memcpy()

In migration library?

No

msize()

QNX Neutrino equivalent:

msize(), musize(), andDH ULEN()

In migration library?

No

See themalloc g library described in the “Heap Analysis” chapter inProgrammer’s
Guide.

ncalloc()

QNX Neutrino equivalent:

calloc()

In migration library?

No

nexpand()

QNX Neutrino equivalent:

realloc()

In migration library?

No

You can userealloc() in place of this, but beware thatrealloc() will move your
memory block to a new address if needed, andnexpand() will fail rather than move
your memory block to a new address.

nfree()

QNX Neutrino equivalent:

free()

In migration library?

No

July 24, 2006 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents 85



 2006, QNX Software Systems GmbH & Co. KG.

nheapchk()

QNX Neutrino equivalent:

mallopt() with MALLOC VERIFY

In migration library?

No

See themalloc g library described in the “Heap Analysis” chapter inProgrammer’s
Guide.

nheapgrow()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

nheapmin()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

nheapset()

QNX Neutrino equivalent:

mallopt() with MALLOC VERIFY

In migration library?

No

See themalloc g library described in the “Heap Analysis” chapter inProgrammer’s
Guide.

nheapshrink()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

86 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents July 24, 2006



 2006, QNX Software Systems GmbH & Co. KG.

nheapwalk()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

See themalloc g library described in the “Heap Analysis” chapter inProgrammer’s
Guide.

nmalloc()

QNX Neutrino equivalent:

malloc()

In migration library?

No

nmsize()

QNX Neutrino equivalent:

msize(), musize(), andDH ULEN()

In migration library?

No

See themalloc g library described in the “Heap Analysis” chapter inProgrammer’s
Guide.

nosound()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

nrealloc()

QNX Neutrino equivalent:

realloc()

In migration library?

No

July 24, 2006 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents 87



 2006, QNX Software Systems GmbH & Co. KG.

onexit()

QNX Neutrino equivalent:

atexit()

In migration library?

No

outp()

QNX Neutrino equivalent:

out8()

In migration library?

No

You should callmmap device io() before calling the port I/O functions.☞

outpd()

QNX Neutrino equivalent:

out32()

In migration library?

No

You should callmmap device io() before calling the port I/O functions.☞

outpw()

QNX Neutrino equivalent:

out16()

In migration library?

No

You should callmmap device io() before calling the port I/O functions.☞

print usage()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

88 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents July 24, 2006



 2006, QNX Software Systems GmbH & Co. KG.

putch()

QNX Neutrino equivalent:

Set/dev/tty as standard output and callputchar().

In migration library?

No

Alternate method: simply open/dev/tty and useputc().

qnx adj time()

QNX Neutrino equivalent:

ClockAdjust()

In migration library?

No

qnx device attach()

QNX Neutrino equivalent:

rsrcdbmgr devno attach()

In migration library?

No

qnx device detach()

QNX Neutrino equivalent:

rsrcdbmgr devno detach()

In migration library?

No

qnx display hex()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

qnx display msg()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

July 24, 2006 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents 89



 2006, QNX Software Systems GmbH & Co. KG.

qnx fd attach()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

The resource manager library removes the need for this.

qnx fd detach()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

The resource manager library removes the need for this.

qnx fd query()

QNX Neutrino equivalent:

None currently

In migration library?

No

There may be something later.

qnx fullpath()

QNX Neutrino equivalent:

realpath()

In migration library?

No

Userealpath() followed by a call tonetmgr ndtostr() to get the node name.

qnx getclock()

QNX Neutrino equivalent:

None currently for remote nodes.

In migration library?

No

Currently, there’s no way of getting the time from another node in a native QNX
network. Useclock gettime() to get the time on the local node.

90 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents July 24, 2006



 2006, QNX Software Systems GmbH & Co. KG.

qnx getids()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

See the section on “Getting process information” in the Programming Issues chapter in
this guide.

qnx hint attach()

QNX Neutrino equivalent:

InterruptAttach() or InterruptAttachEvent()

In migration library?

No

qnx hint detach()

QNX Neutrino equivalent:

InterruptDetach()

In migration library?

No

qnx hint mask()

QNX Neutrino equivalent:

InterruptMask() andInterruptUnmask()

In migration library?

No

qnx hint query()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

qnx ioctl()

QNX Neutrino equivalent:

devctl()

In migration library?

No

July 24, 2006 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents 91



 2006, QNX Software Systems GmbH & Co. KG.

For thedcmds to use with QSS-supplied resource managers, see<sys/dcmd *.h>.

qnx ioctlmx()

QNX Neutrino equivalent:

devctl()

In migration library?

No

For thedcmds to use with QSS-supplied resource managers, see<sys/dcmd *.h>.

qnx name attach()

QNX Neutrino equivalent:

name attach() or write a resource manager

In migration library?

Yes

If you’re not using the migration library and you’re using QNX Neutrino, then use
name attach() or write resource managers.

For some other methods that the sender can use to find the receiver, see the section on
“How does the sender find the receiver?” in the Programming Issues chapter in this
guide.

qnx name detach()

QNX Neutrino equivalent:

name detach() or write a resource manager

In migration library?

Yes

If you’re not using the migration library and you’re replacingqnx name attach() with
name attach(), then usename detach().

qnx name locate()

QNX Neutrino equivalent:

name open() or write a resource manager

In migration library?

Yes

If you’re not using the migration library and you’re using QNX Neutrino, then use
name attach() or write resource managers.

92 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents July 24, 2006



 2006, QNX Software Systems GmbH & Co. KG.

For some other methods that the sender can use to find the receiver, see the section on
“How does the sender find the receiver?” in the Programming Issues chapter in this
guide.

qnx name locators()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

qnx name nodes()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

qnx name query()

QNX Neutrino equivalent:

Names registered vianame attach() (QNX Neutrino) appear in
/dev/name/local and/dev/name/global.

In migration library?

Yes

The migration library has aqnx name query() function for querying the names
registered using theqnx name attach() migration library function.

qnx net alive()

QNX Neutrino equivalent:

netmgr ndtostr() with ND LOCAL NODE, readdir()

In migration library?

No

Find out the name of your network directory by callingnetmgr ndtostr() with
ND LOCAL NODE for thend parameter. Then walk through the network directory
usingreaddir(). The nodes listed are those that are up.

qnx nidtostr()

QNX Neutrino equivalent:

netmgr ndtostr()

In migration library?

No

July 24, 2006 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents 93



 2006, QNX Software Systems GmbH & Co. KG.

qnx osinfo()

QNX Neutrino equivalent:

No longer supported.

In migration library?

Yes

See the section on “Getting system information” in the Programming Issues chapter in
this guide.

qnx osstat()

QNX Neutrino equivalent:

sysconf()

In migration library?

No

QNX Neutrino doesn’t have as many hard limits as QNX 4, but instead keeps
allocating memory until it runs out. Some limits can be found out by callingsysconf().

qnx pflags()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

See the section on “Process flags” in the Programming Issues chapter in this guide.

qnx prefix attach()

QNX Neutrino equivalent:

name attach() or pathmgr symlink()

In migration library?

No

If you were using this function just to put a name in the prefix table so that other
processes could find yours, then usename attach() instead (QNX Neutrino).

If you were using this function in an I/O manager that handledIO * messages, then
you need to convert to the resource manager library.

If you were using this function to create an alias, then usepathmgr symlink() instead.

94 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents July 24, 2006



 2006, QNX Software Systems GmbH & Co. KG.

qnx prefix detach()

QNX Neutrino equivalent:

name detach() or resmgr detach() or pathmgr unlink() or unlink()

In migration library?

No

If you’re usingname attach() to register a name (QNX Neutrino), then use
name detach() to detach it.

If you’re writing a resource manager and had attached the name viaresmgr attach(),
then useresmgr detach() to detach it.

If you wanted to remove a symlink created usingpathmgr symlink(), then use
pathmgr unlink() or unlink() instead.

qnx prefix getroot()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

QNX Neutrino doesn’t have the concept of a network root.

qnx prefix query()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

For the names that are associated with a resource manager, you can walk through the
directory structure under/proc/mount. The numbers shown refer to a resource
manager and arend,pid,chid,handle,type where thetype is one of theFTYPE *
macros in<sys/ftype.h>. Names that are the equivalent of replacements (or
aliases) aren’t visible in QNX Neutrino.

qnx prefix setroot()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

QNX Neutrino doesn’t have the concept of a network root.

July 24, 2006 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents 95



 2006, QNX Software Systems GmbH & Co. KG.

qnx proxy attach()

QNX Neutrino equivalent:

Replace proxies with pulses

In migration library?

Yes

If you’re not using the migration library, then consider replacing proxies with pulses.

qnx proxy detach()

QNX Neutrino equivalent:

No longer supported.

In migration library?

Yes

If you’re not using the migration library and you’re replacingqnx proxy attach() with
pulses, then you may need to detach the connection for delivering the pulse.

qnx proxy rem attach()

QNX Neutrino equivalent:

Replace proxies with pulses

In migration library?

No

If you’re not using the migration library, then consider replacing proxies with pulses.

qnx proxy rem detach()

QNX Neutrino equivalent:

Replace proxies with pulses

In migration library?

No

If you’re not using the migration library and you’re replacingqnx proxy rem attach()
with pulses, then you may need to detach the connection for delivering the pulse.

qnx psinfo()

QNX Neutrino equivalent:

No longer supported.

In migration library?

Yes

96 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents July 24, 2006



 2006, QNX Software Systems GmbH & Co. KG.

See the section on “Getting system information” in the Programming Issues chapter in
this guide.

qnx scheduler()

QNX Neutrino equivalent:

sched setscheduler() for the local case.

In migration library?

No

Currently, there’s no way to do this across the network.

qnx segment alloc()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

Seeshm open(), ftruncate(), andmmap().

qnx segment alloc flags()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

Seeshm open(), ftruncate(), andmmap().

qnx segment arm()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

qnx segment flags()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

Seemmap().

July 24, 2006 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents 97



 2006, QNX Software Systems GmbH & Co. KG.

qnx segment free()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

Seemunmap() andshm unlink().

qnx segment get()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

qnx segment huge()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

qnx segment index()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

qnx segment info()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

To get a physical address, useposix mem offset().

98 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents July 24, 2006



 2006, QNX Software Systems GmbH & Co. KG.

qnx segment overlay()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

Seemmap device memory() or mmap().

qnx segment overlay flags()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

Seemmap device memory() or mmap().

qnx segment put()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

qnx segment raw alloc()

QNX Neutrino equivalent:

shm ctl()

In migration library?

No

Create a shared memory object and useshm ctl() to both set its size and to create it as
contiguous. If the process dies, then as long as you don’t doshm unlink() the memory
will still be set aside. To get a physical address, useposix mem offset().

qnx segment raw free()

QNX Neutrino equivalent:

shm unlink()

In migration library?

No

July 24, 2006 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents 99



 2006, QNX Software Systems GmbH & Co. KG.

To return memory allocated as detailed above underqnx segment raw alloc(), close()
the file descriptor,munmap() the memory, and callshm unlink().

There’s no equivalent function for adding memory that wasn’t reported by the BIOS.
However, this sort of thing can be done using the-M option tostartup-* (Utilities
reference) or from the startup code usingadd mem() (seeBuilding Embedded Systems
in the Embedding SDK package).

qnx segment realloc()

QNX Neutrino equivalent:

N/A

In migration library?

No

You can grow shared memory at any time. You can shrink it only to 0 bytes and only
when no other process has it mapped. Shrinking it to other sizes may be implemented
in a future release.

qnx setclock()

QNX Neutrino equivalent:

clock settime() for the local case.

In migration library?

No

Currently, there’s no way to do this across the network.

qnx setids()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

qnx sflags()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

To obtain the equivalent of most of these flags, see the source forqnx osinfo() in the
migration library.

100 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents July 24, 2006



 2006, QNX Software Systems GmbH & Co. KG.

qnx sid query()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

qnx spawn()

QNX Neutrino equivalent:

spawn() andspawn* family.

In migration library?

Yes

See the section on “Process issues” in the Programming Issues chapter in this guide.

qnx strtonid()

QNX Neutrino equivalent:

netmgr ndtostr()

In migration library?

No

qnx sync()

QNX Neutrino equivalent:

sync(), possibly withfdatasync() or fsync().

In migration library?

No

These functions don’t synchronize a filesystem on another node of the network.☞

qnx ticksize()

QNX Neutrino equivalent:

ClockPeriod()

In migration library?

No

This behaves likeqnx ticksize() with the TICKSIZE CLOSESTflag.

July 24, 2006 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents 101



 2006, QNX Software Systems GmbH & Co. KG.

qnx trace close()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

Consider usingsyslog() for logging instead.

qnx trace info()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

Consider usingsyslog() for logging instead.

qnx trace open()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

Consider usingsyslog() for logging instead.

qnx trace read()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

Consider usingsyslog() for logging instead.

qnx trace severity()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

Consider usingsyslog() for logging instead.

102 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents July 24, 2006



 2006, QNX Software Systems GmbH & Co. KG.

qnx trace trigger()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

Consider usingsyslog() for logging instead.

qnx umask()

QNX Neutrino equivalent:

N/A

In migration library?

No

There’s no way to set theumask of another process, but you can useumask() to set the
umask for the caller.

qnx vc attach()

QNX Neutrino equivalent:

ConnectAttach()

In migration library?

No

qnx vc detach()

QNX Neutrino equivalent:

ConnectDetach()

In migration library?

No

qnx vc name attach()

QNX Neutrino equivalent:

open() or name open()

In migration library?

No

This is the equivalent of doingopen() (or name open()) of a name that is registered by
a process on another node viaresmgr attach() (or name attach()).

July 24, 2006 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents 103



 2006, QNX Software Systems GmbH & Co. KG.

qnx vc poll parm()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

See the various docs on QNX Neutrino native networking for similar options.

Readmsg()

QNX Neutrino equivalent:

MsgRead()

In migration library?

Yes

Call this function with the receive ID returned fromMsgReceive() instead of a process
ID.

☞

Readmsgmx()

QNX Neutrino equivalent:

MsgReadv()

In migration library?

Yes

Call this function with the receive ID returned fromMsgReceive() instead of a process
ID.

☞

Receive()

QNX Neutrino equivalent:

MsgReceive()

In migration library?

Yes

Call this function with a channel ID returned fromChannelCreate() instead of a
process ID.

☞

For more information, see the section on “Channel IDs vs process IDs” in the
Programming Issues chapter in this guide.

104 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents July 24, 2006



 2006, QNX Software Systems GmbH & Co. KG.

Receivemx()

QNX Neutrino equivalent:

MsgReceivev()

In migration library?

Yes

Call this function with a channel ID returned fromChannelCreate() instead of a
process ID.

☞

For more information, see the section on “Channel IDs vs process IDs” in the
Programming Issues chapter in this guide.

Relay()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

reltimer()

QNX Neutrino equivalent:

timer settime( CLOCK REALTIME, 0, ...)

In migration library?

No

Reply()

QNX Neutrino equivalent:

MsgReply()

In migration library?

Yes

Call this function with the receive ID returned fromMsgReceive() instead of a process
ID.

☞

Replymx()

QNX Neutrino equivalent:

MsgReplyv()

July 24, 2006 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents 105



 2006, QNX Software Systems GmbH & Co. KG.

In migration library?

Yes

Call this function with the receive ID returned fromMsgReceive() instead of a process
ID.

☞

rmtimer()

QNX Neutrino equivalent:

timer delete()

In migration library?

No

rotl()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

rotr()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

searchenv()

QNX Neutrino equivalent:

searchenv()

In migration library?

No

Thesearchenv() function doesn’t search in the current directory unless it’s specified in
the given environment variable.

☞

106 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents July 24, 2006



 2006, QNX Software Systems GmbH & Co. KG.

segread()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

Send()

QNX Neutrino equivalent:

MsgSend()

In migration library?

Yes

This function takes a connection ID (coid) instead of a process ID. You can get this
coid (a file descriptor) fromopen() or ConnectAttach(...,
NTO SIDE CHANNEL, ...).

☞

For more information, see the section on “Channel IDs vs process IDs” in the
Programming Issues chapter in this guide.

Sendfd()

QNX Neutrino equivalent:

MsgSend()

In migration library?

No

This function takes a file descriptor (which is also a connection ID in QNX Neutrino).☞

For more information, see the section on “Channel IDs vs process IDs” in the
Programming Issues chapter in this guide.

Sendfdmx()

QNX Neutrino equivalent:

MsgSendv()

In migration library?

No

July 24, 2006 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents 107



 2006, QNX Software Systems GmbH & Co. KG.

This function takes a file descriptor (which is also a connection ID in QNX Neutrino).☞

For more information, see the section on “Channel IDs vs process IDs” in the
Programming Issues chapter in this guide.

Sendmx()

QNX Neutrino equivalent:

MsgSendv()

In migration library?

Yes

This function takes a connection ID (coid) instead of a process ID. You can get this
coid (a file descriptor) fromopen() or ConnectAttach(...,
NTO SIDE CHANNEL, ...).

☞

For more information, see the section on “Channel IDs vs process IDs” in the
Programming Issues chapter in this guide.

setmx()

QNX Neutrino equivalent:

SETIOV() for use with the QNX NeutrinoMsg*() functions.

In migration library?

Yes — a setmx() macro is provided in the migration library header file.

set new handler()

QNX Neutrino equivalent:

N/A

In migration library?

No

This is available in the C++ library (posted as free software for QNX Neutrino).

set new handler()

QNX Neutrino equivalent:

N/A

In migration library?

No

This is available in the C++ library (posted as free software for QNX Neutrino).

108 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents July 24, 2006



 2006, QNX Software Systems GmbH & Co. KG.

sound()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

splitpath()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

splitpath2()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

stackavail()

QNX Neutrino equivalent:

stackavail()

In migration library?

No

status87()

QNX Neutrino equivalent:

No longer supported.

In migration library?

No

strdate()

QNX Neutrino equivalent:

time(), localtime(), gmtime(), andstrftime()

In migration library?

No

July 24, 2006 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents 109



 2006, QNX Software Systems GmbH & Co. KG.

strdup()

QNX Neutrino equivalent:

strdup()

In migration library?

No

stricmp()

QNX Neutrino equivalent:

stricmp()

In migration library?

No

strlwr()

QNX Neutrino equivalent:

strlwr()

In migration library?

No

strnicmp()

QNX Neutrino equivalent:

strnicmp()

In migration library?

No

strrev()

QNX Neutrino equivalent:

strrev()

In migration library?

No

strtime()

QNX Neutrino equivalent:

time(), localtime(), gmtime(), andstrftime()

In migration library?

No

110 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents July 24, 2006



 2006, QNX Software Systems GmbH & Co. KG.

strupr()

QNX Neutrino equivalent:

strupr()

In migration library?

No

tcsetct()

QNX Neutrino equivalent:

N/A

In migration library?

No

Although there’s no equivalent function for this, the first tty that is opened without
O NOCTTY after a call tosetsid() and that doesn’t already have a controlling process
will cause the calling process to be the controlling process for this tty.

term * functions

The following functions have no QNX Neutrino equivalent, and aren’t in the migration
library; usencurses instead.

term attr type()
term axis()
term bar()
term box()
term box fill()
term box off()
term box on()
term clear()
term color()
term cur()
term delete char()
term delete line()
term down()
term field()
term fill()
term flush()
term get line()
term home()
term init()
term insert char()
term insert line()
term insert off()
term insert on()

term key()
term left()
term lmenu()
term load()
term menu()
term mouse default()
term mouse flags()
term mouse handler()
term mouse hide()
term mouse move()
term mouse off()
term mouse on()
term mouse process()
term printf()
term receive()
term relearn size()
term resize off()
term resize on()
term restore()
term restore image()
term right()
term save image()
term scroll down()

July 24, 2006 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents 111



 2006, QNX Software Systems GmbH & Co. KG.

term scroll up()
term setup()
term type()
term unkey()

term up()
term video off()
term video on()
term window scan()

tfork()

QNX Neutrino equivalent:

N/A

In migration library?

No

QNX Neutrino has true POSIX threads. See thepthread *() functions (specifically,
pthread create()) as a starting point.

timer create()

QNX Neutrino equivalent:

timer create()

In migration library?

No

The QNX 4 version was based on a draft standard. In QNX Neutrino, the timer ID is
returned through the third parameter, and thesigevent structure is filled in
differently.

tolower()

QNX Neutrino equivalent:

tolower()

In migration library?

No

toupper()

QNX Neutrino equivalent:

toupper()

In migration library?

No

Trace0()

The following functions have no QNX Neutrino equivalent, and aren’t in the migration
library; consider usingsyslog() for logging instead:

112 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents July 24, 2006



 2006, QNX Software Systems GmbH & Co. KG.

Trace0()
Trace0b()
Trace1()
Trace2()
Trace2b()
Trace3()

Trace4()
Trace4b()
Trace5()
Trace5b()
Trace6()
Trace6b()

Trigger()

QNX Neutrino equivalent:

N/A

In migration library?

Yes

Proxies have been replaced bypulses. See the section on “Proxies vs pulses” in the
chapter on Programming Issues in this guide.

The migration libraryTrigger() function works the same as the QNX 4 one, but it’s
slower if the “triggerer” is in a different process than that which the proxy is attached
to. For details, see theTrigger() function in the Migration Library chapter in this
guide.

umount()

QNX Neutrino equivalent:

umount()

In migration library?

No

This is supported, but it now has unused flags parameters.

ungetch()

QNX Neutrino equivalent:

ungetc()

In migration library?

No

unlock()

QNX Neutrino equivalent:

fcntl() with F SETLK

In migration library?

No

July 24, 2006 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents 113



 2006, QNX Software Systems GmbH & Co. KG.

vbprintf()

QNX Neutrino equivalent:

vsnprintf()

In migration library?

No

vcprintf()

QNX Neutrino equivalent:

vprintf(), with /dev/tty set as standard output.

In migration library?

No

vcscanf()

QNX Neutrino equivalent:

vsscanf(), with /dev/tty set as standard output.

In migration library?

No

Writemsg()

QNX Neutrino equivalent:

MsgWrite()

In migration library?

Yes

This function takes the receive ID returned fromMsgReceive() instead of a process ID.☞

Writemsgmx()

QNX Neutrino equivalent:

MsgWritev()

In migration library?

Yes

114 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents July 24, 2006



 2006, QNX Software Systems GmbH & Co. KG.

This function takes the receive ID returned fromMsgReceive() instead of a process ID.☞

Yield()

QNX Neutrino equivalent:

sched yield()

In migration library?

Yes

July 24, 2006 Appendix: A � QNX 4 Functions & QNX Neutrino Equivalents 115





Appendix B

QNX 4 functions supported by QNX
Neutrino

July 24, 2006 Appendix: B � QNX 4 functions supported by QNX Neutrino 117





 2006, QNX Software Systems GmbH & Co. KG.

Some functions from the QNX 4 C library are present in QNX Neutrino, but behave
differently or have a slightly different set of arguments to meet the POSIX 1003.1
specification.

These QNX 4 functions are currently available to QNX Neutrino programs (note that
most of them are part of the ANSI C library or POSIX 1003.1 spec):

abort()
abs()
accept()
access()
acos()
acosh()
alarm()
alloca()
asctime()
asin()
asinh()
assert()
atan()
atan2()
atanh()
atexit()
atof()
atoh()
atoi()
atol()

basename()
bcmp()
bcopy()
bind()
bindresvport()
brk()
bsearch()
bzero()

cabs()
calloc()
ceil()
cfgetispeed()
cfgetospeed()
cfree()
cfsetispeed()
cfsetospeed()
chdir()
chmod()
chown()

chroot()
chsize()
clearenv()
clearerr()
clock()
clock getres()
clock gettime()
clock nanosleep()
clock settime()
close()
closedir()
closelog()
cmdname()

confstr()
connect()
cos()
cosh()
creat()
ctermid()
ctime()

delay()
difftime()
div()
dn comp()
dn expand()
ds clear()
ds create()
ds deregister()
ds flags()
ds get()
ds register()
ds set()
dup()
dup2()

eaccess()
endgrent()
endhostent()
endnetent()
endprotoent()

July 24, 2006 Appendix: B � QNX 4 functions supported by QNX Neutrino 119



 2006, QNX Software Systems GmbH & Co. KG.

endpwent()
endservent()
environ
eof()
errno
execl()
execle()
execlp()
execlpe()
execv()
execve()
execvp()
execvpe()
exit()

exit()
exp()

fabs()
fchmod()
fchown()
fclose()
fcloseall()
fcntl()
fdatasync()
fdopen()
feof()
ferror()
fflush()
ffs()
fgetc()
fgetchar()
fgetpos()
fgets()
fileno()
floor()
flushall()
fmod()
fnmatch()
fopen()
fork()
fpathconf()
fprintf()
fputc()
fputchar()
fputs()
fread()
free()

freopen()
frexp()
fscanf()
fseek()
fsetpos()
fstat()
fsync()
ftell()
ftime()
ftruncate()
ftw()
fwrite()

getc()
getchar()
getcwd()
getdtablesize()
getegid()
getenv()
geteuid()
getgid()
getgrent()
getgrgid()
getgrnam()
getgrouplist()
getgroups()
gethostbyaddr()
gethostbyname()
gethostent()
gethostname()
getitimer()
getlogin()
getnetbyaddr()
getnetbyname()
getnetent()
getopt()
getpass()
getpeername()
getpgid()
getpgrp()
getpid()
getppid()
getprio()
getprotobyname()
getprotobynumber()
getprotoent()
getpwent()

120 Appendix: B � QNX 4 functions supported by QNX Neutrino July 24, 2006



 2006, QNX Software Systems GmbH & Co. KG.

getpwnam()
getpwuid()
getrusage()
gets()
getservbyname()
getservbyport()
getservent()
getsid()
getsockname()
getsockopt()
gettimeofday()
getuid()
getw()
gmtime()

h errno
herror()
hostent

hstrerror()
htonl()
htons()
hypot()

index()
inet addr()
inet aton()
inet lnaof()
inet makeaddr()
inet netof()
inet network()
inet ntoa()
inet ntop()
inet pton()
input line()
ioctl()
isalnum()
isalpha()
isascii()
isatty()
iscntrl()
isdigit()
isfdtype()
isgraph()
islower()
isprint()
ispunct()
isspace()

isupper()
isxdigit()
itoa()

j0()
j1()
jn()

kill()
killpg()

labs()
ldexp()
ldiv()
link()
listen()
localeconv()
localtime()
log()
log10()
login tty()
longjmp()
lseek()
lstat()
ltoa()
ltrunc()

main()
malloc()
max()
mblen()
mbstowcs()
mbtowc()
memccpy()
memchr()
memcmp()
memcpy()
memicmp()
memmove()
memset()
min()
mkdir()
mkfifo()
mknod()
mktemp()
mktime()
mmap()
modem open()

July 24, 2006 Appendix: B � QNX 4 functions supported by QNX Neutrino 121



 2006, QNX Software Systems GmbH & Co. KG.

modem read()
modem script()
modem write()
modf()
mprotect()
mq close()
mq getattr()
mq notify()
mq open()
mq receive()
mq send()
mq setattr()
mq unlink()
munmap()

nanosleep()
netent

nice()
ntohl()
ntohs()

offsetof()
open()
opendir()
openlog()

pathconf()
pause()
pclose()
perror()
pipe()
popen()
pow()
printf()
protoent

putc()
putchar()
putenv()
puts()
putw()

qsort()

Raccept()
raise()
rand()
random()
Rbind()
rcmd()

Rconnect()
rdchk()
read()
readdir()
readlink()
readv()
realloc()
realpath()
re comp()
recv()
recvfrom()
recvmsg()
re exec()
regcomp()
regerror()
regexec()
regfree()
remove()
rename()
res init()
res mkquery()
res query()
res querydomain()
res search()
res send()
rewind()
rewinddir()
Rgetsockname()
rindex()
Rlisten()
rmdir()
Rrcmd()
rresvport()
Rselect()
ruserok()

sbrk()
scandir()
scanf()
sched getparam()
sched getscheduler()
sched setparam()
sched setscheduler()
sched yield()
searchenv()
select()
sem destroy()

122 Appendix: B � QNX 4 functions supported by QNX Neutrino July 24, 2006



 2006, QNX Software Systems GmbH & Co. KG.

sem init()
sem post()
sem trywait()
sem wait()
send()
sendmsg()
sendto()
servent

setbuf()
setegid()
setenv()
seteuid()
setgid()
setgrent()
sethostent()
sethostname()
setitimer()
setjmp()
setlinebuf()
setlocale()
setlogmask()
setnetent()
setpgid()
setpgrp()
setprio()
setprotoent()
setpwent()
setregid()
setreuid()
setservent()
setsid()
setsockopt()
settimeofday()
setuid()
setvbuf()
shm open()
shm unlink()
shutdown()
sigaction()
sigaddset()
sigblock()
sigdelset()
sigemptyset()
sigevent

sigfillset()
sigismember()

siglongjmp()
sigmask()
signal()
sigpending()
sigprocmask()
sigsetjmp()
sigsuspend()
sin()
sinh()
sleep()

snprintf()
sockatmark()
socket()
SOCKSinit()
sopen()
spawnl()
spawnle()
spawnlp()
spawnlpe()
spawnv()
spawnve()
spawnvp()
spawnvpe()
sprintf()
sqrt()
srand()
sscanf()
stat()
strcasecmp()
strcat()
strchr()
strcmp()
strcmpi()
strcoll()
strcpy()
strcspn()
strdup()
strerror()
strftime()
stricmp()
strlen()
strlwr()
strncat()
strncmp()
strncpy()
strnicmp()

July 24, 2006 Appendix: B � QNX 4 functions supported by QNX Neutrino 123



 2006, QNX Software Systems GmbH & Co. KG.

strnset()
strpbrk()
strrchr()
strrev()
strsep()
strset()
strsignal()
strspn()
strstr()
strtod()
strtok()
strtol()
strtoul()
strupr()
strxfrm()
symlink()
sync()
sysconf()
syslog()
system()

tan()
tanh()
tcdrain()
tcdropline()
tcflow()
tcflush()
tcgetattr()
tcgetpgrp()
tcsendbreak()
tcsetattr()
tcsetpgrp()
tell()
tempnam()
time()
timer delete()
timer gettime()
timer settime()

times()
tmpfile()
tmpnam()
tolower()
toupper()
truncate()
ttyname()
tzset()

ultoa()
umask()
uname()
ungetc()
unlink()
usleep()
utime()
utimes()
utoa()

va arg()
va end()
va start()
vfork()
vfprintf()
vfscanf()
vprintf()
vsprintf()
vsscanf()
vsyslog()

wait()
waitpid()
wcstombs()
wctomb()
write()

y0()
y1()
yn()

These QNX 4 functions are available under QNX Neutrino, but have a different API or
usage:

� getwd()

� glob()

� inet ntoa r()

� timer create() — the QNX 4 version was based on a draft standard.

124 Appendix: B � QNX 4 functions supported by QNX Neutrino July 24, 2006



 2006, QNX Software Systems GmbH & Co. KG.

� writev()

� crypt() — a Unix-compatible version; for the QNX 4 version, useqnx crypt()

July 24, 2006 Appendix: B � QNX 4 functions supported by QNX Neutrino 125


